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1. Introduction 

This document contains a description of Cboe Clear’s margin model (referred to in this document as the 
“ClearisQ” model) and associated margin add-ons relevant to the clearing of equity index futures and options 
(collectively referred to as “equity derivatives”)1.   
 
The margin methodologies described in this document are designed to meet the requirements set out under 
European Market Infrastructure Regulation (“EMIR”), and EMIR Regulatory Technical Standards (“EMIR RTS”). 
 
ClearisQ calculates core initial margin (“IM”) requirements using a Filtered Historical Simulation (“FHS”) 
methodology, based on an Expected Shortfall (“ES”) tail measure at a confidence level of 99% and a lookback 
period of 700 business days.  The FHS model is supplemented by a Stressed Historical Simulation (“StressHS”) 
model in accordance with anti-procyclicality (“APC”) requirements stipulated under EMIR.  An APC-compliant 
margin is then computed as the weighted sum of the FHS and the StressHS components in line with regulatory 
requirements.   
 
Where applicable, initial margin add-ons are calculated in addition to core IM to cover exposures related to 
wrong-way risk, liquidity risk, and large stress loss exposures. 
 
Cboe Clear calculates margin requirements on an overnight and intraday basis for every Clearing Participant 
portfolio containing equity derivatives using the methodologies described in this document.   
 
This document is intended for existing and prospective Clearing Participants, regulators, and internal users. 
  

 

1 A margin model description document relevant to cash equity products is available separately. 
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2. Margin Requirements  

2.1 Overview 

During the course of each business day, on a continuous basis, Cboe Clear calculates a Margin Requirement for 
each Clearing Participant portfolio containing equity derivative contracts, which is based on five components, 
and which must be collateralised at all times. Margin Requirements may be collateralised with eligible collateral 
as listed in the Cboe Clear Acceptable Collateral2 guidelines, subject to the applicable haircut. The margin 
components used to calculate each Clearing Participant’s Margin Requirement are: 

• Initial Margin (“IM”) 

• Futures Variation Margin (“VM”) 

• Options Premium Margin (“PM”) 

• Unexpired Net Options Value (“NOV”) 

• Expired Options NOV 
 
On the morning of each business day, Cboe Clear performs the daily cash settlement cycle in each relevant 
currency (CHF, EUR, and GBP), which facilitates the pass-through of cash settlement amounts pertaining to the 
previous clearing day, from payers to receivers.  The elements comprising the daily cash settlement amounts 
are: 

• Futures daily cash-settled obligations 

• Option premium payment obligations 

• Option exercise cash-settled obligations 
 

2.2 Futures Variation Margin 

Futures Variation Margin represents the intra-day accumulated gain or loss on futures contracts. On day (and 
time) t, it is calculated for a given portfolio as: 
 

𝑉𝑀𝑡 =∑𝑉𝑀𝑐𝑐𝑦,𝑡𝐹𝑋𝑐𝑐𝑦,𝑡
𝑐𝑐𝑦

 (2.1) 

 

where 𝐹𝑋𝑐𝑐𝑦,𝑡 is the foreign exchange spot rate for currency pair ccy/EUR (where 1 unit of ccy currency buys 

the quoted amount of EUR currency), and 𝑉𝑀𝑐𝑐𝑦,𝑡 is the VM in ccy currency at t calculated as: 

 

𝑉𝑀𝑐𝑐𝑦,𝑡 =∑𝑃𝑖𝑐𝑐𝑦,𝑡𝑄𝑖𝑐𝑐𝑦,𝑡𝑆𝑖𝑐𝑐𝑦
𝑖𝑐𝑐𝑦

−∑𝑃𝑖𝑐𝑐𝑦,𝑐𝑙𝑜𝑠𝑒,𝑡−1𝑄𝑖𝑐𝑐𝑦,𝑐𝑙𝑜𝑠𝑒,𝑡−1𝑆𝑖𝑐𝑐𝑦
𝑖𝑐𝑐𝑦

 

−∑𝑃̅𝑖𝑐𝑐𝑦,𝑏,𝑡
𝑖𝑐𝑐𝑦

𝑄𝑖𝑐𝑐𝑦,𝑏,𝑡𝑆𝑖𝑐𝑐𝑦 +∑𝑃̅𝑖𝑐𝑐𝑦,𝑠,𝑡
𝑖𝑐𝑐𝑦

𝑄𝑖𝑐𝑐𝑦,𝑠,𝑡𝑆𝑖𝑐𝑐𝑦 
(2.2) 

 
and, 

𝑖𝑐𝑐𝑦 = futures contract 𝑖, denominated in currency 𝑐𝑐𝑦  

𝑆𝑖𝑐𝑐𝑦 = Contract size of options contract 𝑖𝑐𝑐𝑦    

𝑃𝑖𝑐𝑐𝑦,𝑡 = Market (or closing) price of futures contract 𝑖𝑐𝑐𝑦  at t  

𝑄𝑖𝑐𝑐𝑦,𝑡 = Quantity in futures contract 𝑖𝑐𝑐𝑦  at 𝑡 

 

2 https://cdn.cboe.com/euroccp/resources/Regulation-Acceptable-Collateral.pdf 
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𝑃𝑖𝑐𝑐𝑦,𝑐𝑙𝑜𝑠𝑒,𝑡−1 = Closing price of futures contract 𝑖𝑐𝑐𝑦  on day 𝑡 − 1  

𝑄𝑖𝑐𝑐𝑦,𝑐𝑙𝑜𝑠𝑒,𝑡−1 = Closing quantity in futures contract 𝑖𝑐𝑐𝑦  on day 𝑡 − 1 

𝑃̅𝑖𝑐𝑐𝑦,𝑏,𝑡 = Weighted average price of futures contract 𝑖𝑐𝑐𝑦 bought on day 𝑡 

𝑄𝑖𝑐𝑐𝑦,𝑏,𝑡 = Quantity of futures contract 𝑖𝑐𝑐𝑦  bought on day 𝑡  

𝑃̅𝑖𝑐𝑐𝑦𝑠,𝑡 = Weighted average price of futures contract 𝑖𝑐𝑐𝑦 sold on day 𝑡  

𝑄𝑖𝑐𝑐𝑦,𝑠,𝑡 = Quantity of futures contract 𝑖𝑐𝑐𝑦  sold on day 𝑡 

 
Positive VM represents a gain to the Clearing Participant, whilst negative VM represents a loss. On an intra-day 
basis, Futures VM is aggregated across all currencies (in EUR equivalent) and collateralised throughout the 
clearing day.  
 
Each morning, daily VM cash settled obligations in each currency are settled during the cash settlement cycle. 
On completion of the daily cash settlement cycle, the previous day’s Futures VM resets to zero. 
 
On the expiry date of the futures contract, the final daily Futures VM amount is calculated, and this daily cash 
settled obligation is settled within the cash settlement cycle on the following business day as usual. The final 
settlement amount may also be calculated using Eq. 2.2, with the final futures settlement price used in lieu of 
the closing price. As with the normal daily process, on completion of the daily cash settlement cycle, the 
previous day’s Futures VM resets to zero. 
 

2.3 Options Premium Margin 

Option premiums are payable from option buyers to option sellers one business day after trade execution.  As 
such, the settlement of the premium payment obligations occurs as part of the next day’s cash settlement 
cycle. 
 
Options Premium Margin represents the intra-day accumulated premiums payable/receivable on options 
contracts that have been traded during a clearing day.  On day (and time) t, it is calculated for a given portfolio 
as: 
 

𝑃𝑀𝑡 =∑𝑃𝑀𝑐𝑐𝑦,𝑡𝐹𝑋𝑐𝑐𝑦,𝑡
𝑐𝑐𝑦

 (2.3) 

 

where 𝐹𝑋𝑐𝑐𝑦,𝑡 is the foreign exchange spot rate for currency pair ccy/EUR (where 1 unit of ccy currency buys 

the quoted amount of EUR currency), and 𝑃𝑀𝑐𝑐𝑦,𝑡 is the PM in ccy currency at t calculated as: 

 

𝑃𝑀𝑐𝑐𝑦,𝑡 =∑𝑃𝑗,𝑖𝑐𝑐𝑦,𝑏,𝑡
𝑖𝑐𝑐𝑦

𝑄𝑗,𝑖𝑐𝑐𝑦,𝑏,𝑡𝑆𝑖𝑐𝑐𝑦 −∑𝑃𝑗,𝑖𝑐𝑐𝑦,𝑠,𝑡
𝑖𝑐𝑐𝑦

𝑄𝑗,𝑖𝑐𝑐𝑦,𝑠,𝑡𝑆𝑖𝑐𝑐𝑦 (2.4) 

 
and, 

𝑖𝑐𝑐𝑦 = Options contract 𝑖, denominated in currency 𝑐𝑐𝑦 

𝑆𝑖𝑐𝑐𝑦 = Contract size of options contract 𝑖𝑐𝑐𝑦    

𝑃𝑗,𝑖𝑐𝑐𝑦,𝑠,𝑡 = Price per contract of trade 𝑗 in option 𝑖𝑐𝑐𝑦 , sold on day t 

𝑄𝑗,𝑖𝑐𝑐𝑦,𝑠,𝑡 = Quantity of trade 𝑗 in option 𝑖𝑚, sold on day t  

𝑃𝑗,𝑖𝑐𝑐𝑦,𝑏,𝑡 = Price per contract of trade 𝑗 in option 𝑖𝑚, bought on day t 

𝑄𝑗,𝑖𝑐𝑐𝑦,𝑏,𝑡 = Quantity of trade 𝑗 in option 𝑖𝑚, bought on day t  
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On an intra-day basis, Options PM is aggregated across all currencies (in EUR equivalent) and collateralised 
throughout the clearing day.  
 
Each morning, Options PM cash settled obligations in each currency are settled during the cash settlement 
cycle. On completion of the daily cash settlement cycle, the previous day’s Options PM resets to zero.  
   

2.4 Unexpired Net Options Value 

The Unexpired Net Options Value represents the current value of all unexpired options held within a portfolio.  
On day (and time) t, it is calculated for a given portfolio as: 
 

𝑁𝑂𝑉𝑡 =∑𝑁𝑂𝑉𝑐𝑐𝑦,𝑡𝐹𝑋𝑐𝑐𝑦,𝑡
𝑐𝑐𝑦

 (2.5) 

 

where 𝐹𝑋𝑐𝑐𝑦,𝑡 is the foreign exchange spot rate for currency pair ccy/EUR (where 1 unit of ccy currency buys 

the quoted amount of EUR currency), and 𝑁𝑂𝑉𝑐𝑐𝑦,𝑡 is the NOV in ccy currency at t calculated as:  

 

𝑁𝑂𝑉𝑐𝑐𝑦,𝑡 =∑𝑃𝑖𝑐𝑐𝑦,𝑡𝑄𝑖𝑐𝑐𝑦,𝑡𝑆𝑖𝑐𝑐𝑦
𝑖𝑐𝑐𝑦

 (2.6) 

 
and, 

𝑖𝑐𝑐𝑦 = Options contract 𝑖, denominated in currency 𝑐𝑐𝑦 

𝑆𝑖𝑐𝑐𝑦 = Contract size of options contract 𝑖𝑐𝑐𝑦    

𝑃𝑖𝑐𝑐𝑦,𝑡 = Market (or closing) price of option contract 𝑖𝑐𝑐𝑦  at t 

𝑄𝑖𝑐𝑐𝑦,𝑡 = Quantity in unexpired option contract 𝑖𝑐𝑐𝑦 at 𝑡 (net long positon is a postive value) 

 
The NOV represents the cash amount that would be received or paid upon the liquidation of all options within 
the portfolio. For this reason, any negative total NOV value must be collateralised to ensure that sufficient 
resources are available to close out positions in a Clearing Participant default. Positive total NOV values, on the 
other hand, serve to offset and reduce collateral obligations arising from the other elements within the margin 
requirement, subject to a floor of zero on the total margin requirement. 
 

2.5 Exercised Net Options Value 

Exercised Net Options Value reflects the accrued, but unsettled amounts arising from the exercise of options 
at time of expiry. On a given day (and time) t, it is calculated for a given portfolio as: 
 

𝑁𝑂𝑉𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑,𝑡 =∑𝐸𝑋𝑂𝑐𝑐𝑦,𝑡𝐹𝑋𝑐𝑐𝑦,𝑡
𝑐𝑐𝑦

 (2.7) 

 

where 𝐹𝑋𝑐𝑐𝑦,𝑡 is the foreign exchange spot rate for currency pair ccy/EUR (where 1 unit of ccy currency buys 

the quoted amount of EUR currency), and 𝐸𝑋𝑂𝑐𝑐𝑦,𝑡 is the option exercise settlement obligation in ccy currency 

at t calculated as: 
 

𝐸𝑋𝑂𝑐𝑐𝑦,𝑡 = ∑max (𝑃𝑐𝑟𝑒𝑓 − 𝐾𝑐 , 0)𝑄𝑐𝑆𝑐
𝑐𝑐𝑐𝑦

+ ∑max (𝐾𝑝 − 𝑃𝑝𝑟𝑒𝑓 , 0)𝑄𝑝𝑆𝑝
𝑝𝑐𝑐𝑦

 (2.8) 

 
and, 

𝑐𝑐𝑐𝑦 = Call option 𝑐  denominated in currency 𝑐𝑐𝑦 
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𝑝𝑐𝑐𝑦 = Put option 𝑝 denominated in currency 𝑐𝑐𝑦 

𝑃𝑐𝑟𝑒𝑓 = Reference price of underlying index for call option 𝑐 

𝐾𝑐 = Strike price of call option 𝑐 

𝑄𝑐 = Quantity of call option 𝑐 held at time of expiry 

𝑆𝑐 = Contract size of call option 𝑐 

𝑃𝑝𝑟𝑒𝑓 = Reference price of underlying index for put option 𝑝 

𝐾𝑝 = Strike price of put option 𝑝 

𝑄𝑝 = Quantity of put option 𝑝 held at time of expiry 

𝑆𝑝 = Contract size of put option 𝑝 

 
The reference price for the underlying index is set by the exchange based on the settlement mechanism, as 
outlined in the contract specifications. 
 
On an intra-day basis, Exercised NOV is aggregated across all currencies (in EUR equivalent) and collateralised 
throughout the clearing day.  
 
Each morning, Exercised NOV cash settled obligations in each currency are settled during the cash settlement 
cycle. On completion of the daily cash settlement cycle, the previous day’s Exercised NOV resets to zero. 
 

2.6 Aggregation of Margin Requirements  

On day (and time) t, the total Margin Requirement that must be collateralised for a given portfolio is calculated 
based on the above five components, and is floored at zero: 

 
𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑟𝑔𝑖𝑛𝑡 = max (𝐼𝑀𝑡 − 𝑉𝑀𝑡 + 𝑃𝑀𝑡 −𝑁𝑂𝑉𝑡 − 𝑁𝑂𝑉𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑,𝑡 , 0) 

 

(2.9) 

where 𝐼𝑀𝑡 is the Initial Margin requirement represented as a positive value. 
 

2.7 Aggregation of Cash-Settled Obligations 

On day (and time) t, the total cash amount that is due to be received (or paid ) by each Clearing Participant in 
the next day’s cash settlement cycle is calculated in each relevant currency based on the following three 
components: 

 
Cash Settlementccy=  Futures daily cash-settled obligationsccy 

+ Option premium payment obligationsccy 
+ Option exercise cash-settled obligationsccy 

(2.10) 

 
where amounts due to be received by the Clearing Participant are represented as positive values, and vice 
versa. 
 
 
The remainder of this document details the calculation of the Initial Margin requirement. 
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3. Initial Margin methodology overview 

3.1 Initial Margin components 

The core margin methodology is based on a Filtered Historical Simulation (FHS), Expected Shortfall (ES)3 
methodology. This model is then supplemented with adjustments designed to improve resilience with respect 
to procyclicality and netting. Finally, the Initial Margin is supplemented with three margin add-ons designed to 
address risks arising from wrong-way risk, illiquid positions, and positions that are large relative to the total 
available resources of the CCP.  
 

3.1.1 Filtered historical simulation 

The FHS methodology estimates potential losses based on historical changes (returns) in prices and implied 
volatilities.  The margins calculated using this model represent the potential expected loss for a given portfolio 
based on Cboe Clear’s assumed lookback period, liquidation period, and confidence level (see Section 3.2).     
 
The key features of the FHS model are its ability to capture dynamic volatility regime changes and reproduce 
the joint distribution of returns, without the need to compute the covariance matrix. 
 
The FHS methodology quantifies risk exposure at the portfolio level, i.e. allowing for risk offsets between 
individual instruments where appropriate.  The calculation of margin at the portfolio level is subject to a 
portfolio margin limit rule in accordance with Article 27(4) of the EMIR RTS. 
 

3.1.2 Anti-procyclicality measure 

By construction, the Initial Margin computed using the FHS model adapts to changing market conditions. While 
this property is desirable from the point of view of efficient capital allocation, it can also lead to procyclical 
behaviour where margin requirements increase significantly over a short time period in response to market 
stress.   
 
Article 28 of the EMIR RTS sets out requirements for CCPs to limit the procyclicality of margin requirements to 
the extent that the soundness and financial security of the CCP is not adversely affected.   
 
To comply with regulatory requirements, Cboe Clear applies an anti-procyclicality (APC) measure in the form 
of a stressed historical simulation (StressHS) margin (ie. by applying the option set out under Article 28(1)(b) of 
the EMIR RTS).  
 
The StressHS margin component is based on a historical simulation, expected shortfall methodology, in which 
simulation scenarios are obtained by combining the most recent past returns with a set of defined stressed 
returns.  The margins calculated using this model represent the potential expected loss for a given portfolio 
based on stressed data observations. 
 
The calculation of StressHS margin at the portfolio level is also subject to a portfolio margin limit rule in 
accordance with Article 27(4) of the EMIR RTS. 
 
An APC-compliant margin is then computed as the weighted sum of the FHS and the StressHS components 
(with the stress-based component having a weight of 25%, and the FHS having a weight of 75%, in line with 
regulatory requirements).  
 

3.1.3 Margin add-ons 

In addition to underlying price, and implied volatility market risk, Cboe Clear is also exposed to other specific 
risks which require separate treatments in the form of margin add-ons: 

 

3 Expected Shortfall is also commonly referred to as Expected Tail Loss (ETL) or Conditional Value-at-Risk (CVaR). 
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• Wrong-Way Risk (“WWR”) add-on – reflects the risk due to a Clearing Participant holding long 
exposure to their own stock, including cases where this exposure arises via equity index futures and/or 
options on equity index futures.  This risk originates from the correlation between the default risk and 
the credit exposure of the Clearing Participant. 

• Liquidity Risk (“LR”) add-on – reflects the risk due to concentrated and/or illiquid positions in a 
Clearing Participant portfolio.  This add-on captures the potential price impact of liquidating such 
positions in the event of a default. 

• Large Position (“LP”) add-on – reflects the potential excess stress loss in a Clearing Participant 
portfolio over and above available financial resources.  This add-on captures the excess loss exposure 
taking into account available mutualised Clearing Fund resources under a Cover-2 standard and the 
Clearing Participant’s individual margin collateral posted.  

  

3.1.4 Total IM requirement 

The total IM requirement is the aggregate of the APC-compliant margin plus all the margin add-ons detailed in 
Section 9. 
 

3.2 Key model assumptions 

3.2.1 Confidence level 

Article 24 of the EMIR RTS requires that IM shall be calculated for financial instruments that are not OTC 
derivatives using a minimum confidence level of 99%.  
 
To ensure compliance with the EMIR requirement, Cboe Clear calculates margin requirements using an ES risk 
measure at a confidence level of 99%.  For a given confidence level, the ES measure is a more conservative 
approach than Value-at-Risk (“VaR”)4 – therefore, the ES margin result is never less than VaR for a given 
confidence level. 
 

3.2.2 Lookback window 

Article 25 of the EMIR RTS requires that IM shall be calculated based on data covering at least the latest 12 
months, and that data used shall capture a full range of market conditions including periods of stress.   
 
Cboe Clear satisfies these two requirements by: 

• using a lookback window (N) of 700 business days; and 

• including 50 stress scenarios for computing the StressHS margin component. 
 

3.2.3 Liquidation period (Margin period of risk) 

Article 26 of the EMIR RTS requires that the defined time horizon for the liquidation of open positions shall be 
at least two business days for financial instruments that are not OTC derivatives.   
 
To allow for additional conservativeness, Cboe Clear assumes a liquidation period, also referred to as margin 
period of risk or “MPOR” (h), of three business days when calculating margin requirements.  The computation 
of the risk over the liquidation period is performed by taking into account possible trending or mean-reverting 
behaviour of consecutive returns observed over the lookback window. 
 

3.2.4 Portfolio margin limit rule 

Article 27(4) of the EMIR RTS requires that, where portfolio margining covers multiple instruments, the amount 
of margin shall be no greater than 80% of the difference between the sum of the margins for each product 

 

4 Reference to a VaR-based confidence level is implicit in EMIR.  
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calculated on an individual basis (ie. gross portfolio margin) and the margin calculated based on a combined 
estimation of the exposure for the combined portfolio (ie. net portfolio margin). 
 
To ensure compliance with the EMIR requirement, Cboe Clear applies a portfolio margin limit rule at all times 
for the calculation of portfolio margin which is thus computed as the weighted sum of the gross and net 
portfolio margin (with the net portfolio margin having a weight of 80% in line with regulatory requirements). 
 

3.3 Key model limitations 

3.3.1 Procyclicality 

Notwithstanding the mitigating impact of the APC adjustment, it is important to recognise that the Initial 
Margin methodology, as with any risk-based margin calculation, is sensitive and responsive to the prevailing 
market environment. As such, the methodology will generate higher margin requirements in times of market 
stress, at precisely the time that market participants may be subjected to increased market risk losses, 
increased credit risk or even, in some cases, operational risk arising from new, and unanticipated market 
conditions. While this, in itself, is a limitation, it must be weighed carefully against the benefits of a risk-
sensitive measure, namely: 

• coverage: the methodology ensures that margin levels cover the expected loss in observed market 
stress conditions;  

• responsiveness: margin levels adapt automatically in an appropriate way to changing market 
conditions;  

• efficiency: margin levels reduce automatically in times of lower volatility, subject to the dampening 
effect of the APC measure; and 

• transparency: margin levels are determined by the data directly, and independently of any meaningful 
intervention on a day-to-day basis. Losses for individual scenarios may be investigated and explained. 

  

3.3.2 Reliance on historical market data 

As with any historical Value-at-Risk based methodology, the initial margin model uses, as its inputs, an 
extensive set of historical data points for a substantial range of risk factors. As such, it is limited by both the 
quality and quantity of this data and is sensitive to both errors and omissions. Cboe Clear addresses this 
shortcoming by subjecting historical input data to a rigorous quality assessment, and by performing validation 
of new market data prior to being used in the margin calculation, with a view to capturing and excluding any 
erroneous data points. Furthermore, the methodology includes a proxying logic (see Section 10) for addressing 
cases where data is unavailable, along with an accompanying proxy suppression methodology aimed at 
safeguarding the robustness of the calculation in the event that a subset of the required inputs are missing for 
a given day.  
 

3.3.3 Sensitivity to model parameters  

The methodology relies on the setting of parameters (see Appendix 1) which affect multiple aspects of the 
calculation. Although these levels have been determined based on extensive analysis and in line with all 
applicable regulations and best practice they are also, in a certain sense, arbitrary and could easily be set to 
different levels, which would produce different initial margin numbers. 
 

3.3.4 Sensitivity to distributional assumptions 

Although the Initial Margin methodology generates scenarios using actual observed risk factor returns, and 
hence avoids making explicit parametric distributional assumptions, it does rely on other non-parametric 
distributional assumptions e.g.: 

• Futures prices and FX rates can be modelled using log-returns, with adjustments for prevailing 
volatility (Eq. 7.1 and 7.7)  
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• Implied volatilities may be modelled using absolute returns, without scaling for the volatility-of-
volatility (Eq. 5.20) 

 
Assumptions of this kind are unavoidable for any methodology in which future returns are modelled based on 
observed historical returns; however, they do represent a limitation to the model. If the distribution of future 
returns for a given risk factor were to deviate dramatically from its historical distribution over a short period of 
time, portfolios could experience losses in excess of those predicted. This is mitigated by the responsive nature 
of the model, which will pick up, and incorporate, the most severe of such scenarios and retain them 
indefinitely through the historical stress scenarios, such that future margin calculations will provide protection 
against a re-occurrence. Furthermore, the hypothetical stress-testing which drives the sizing of the default fund 
and, by extension, the large position add-on, does incorporate stresses in excess of those observed historically 
so that these stresses may also be covered. 
 

3.3.5 Reliance on interpolation and extrapolation methodologies  

The model relies on linear interpolation and extrapolation when calculating the futures returns at defined pivot 
points and when calculating instrument P&Ls from these pivot points. It is also used when generating implied 
volatilities at specified pivot points, and interpolating from these points to the points required to generate P&L 
for Clearing Participant portfolios. This latter step also employs spline interpolation (see Section 5.4.2). While 
this methodology is theoretically robust and is in line with best practice, it is also true to say that each time a 
form of interpolation or extrapolation is used, it introduces a small element of imprecision to the calculation 
which can prove difficult to accurately quantify. In addition, the choice of interpolation methodology is 
somewhat arbitrary, and another method might be equally defensible. The methodology aims to address this 
by choosing, in all cases, to use the least complex method of interpolation and extrapolation, subject to the 
requirements of the specific circumstances. 
 

3.3.6 Reliance on calibration of implied volatility surfaces 

As outlined in Section 5.2, the methodology uses the extended surface stochastic volatility inspired (eSSVI) 
methodology to construct arbitrage-free implied volatility surfaces. This is one of many methods that could 
have been used and relies on a number of additional assumptions regarding the behaviour of implied 
volatilities. Although this is a commonly-used methodology with well-documented advantages, it also has a 
number of limitations. The choice of calibration model is important because, if the model does not provide a 
sufficiently close fit to the observed volatility surface by, for example, understating the slope, curvature or 
time-dependence, then it is possible that the model will understate the variability of the implied volatility pivot 
point that are used within the construction of the options P&L scenarios. Cboe Clear mitigates this risk by 
conducting back-testing, which compares actual realised returns in options prices vs the returns distribution. 
In this way, any potential shortcoming of the model can be identified. 
 

3.3.7 Reliance on calibration of implied repo rates and dividend amounts 

As outlined in Section 6.3, the fitting of volatility surfaces for single stock options contracts necessitates the 
calibration of implied repo rates, and implied expected future discrete dividend payment amounts for each 
equity underlier. As detailed in this Section, these values are calibrated using the assumption that the implied 
volatility for a call and a put option on a single equity  underlier with the same moneyness and maturity are the 
same. If this assumption does not hold true in practice, then the chosen calibration process could result in repo 
rates or dividends that are not aligned with the true expected values. This, is turn, could give rise to volatility 
surfaces that are biased, which could lead to imprecise estimates of Initial Margin. Cboe Clear mitigates this 
risk by monitoring the calibrated dividend and repo rates, and investigating any outliers.  
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4. Futures scenarios 

This section describes the computation of P&L scenarios for futures to be fed into the margin calculation.  
 
In order to capture the dynamics of futures prices, it is necessary to model the term structure of the underlying 
index. The main drivers of the term structure are interest rates and expected dividends. Instead of explicitly 
modelling these two quantities, the approach adopted is to model the futures returns directly at a set of static 
times-to-maturities (“pivot points”). This approach requires the following steps: 

• derivation of the futures price from available option prices through put-call parity; 

• derivation of the futures returns for the available maturity dates; and 

• interpolation of the futures returns at the required set of maturity points. 
 
As outlined in Section 3.2, in order to compute Initial Margins for a given product, the FHS methodology 
described in Section 6 requires N scenarios for this product over a horizon h (the holding period or MPOR). 
These scenarios are built from past data within a time period immediately preceding the calculation date t0 and 
referred to as the lookback window.  
 
Cboe Clear adopts a lookback window of N = 700 business days. More specifically, the methodology uses daily 
returns within the lookback period and 𝑁∗ = 𝑁 + ℎ − 1 denotes the total number of such daily returns needed 
to compute N scenarios with MPOR h (see Section 7.3). 
 

4.1 Synthetic futures prices 

4.1.1 Synthetic futures motivation 

Synthetic futures 𝐹𝑡,𝑇
𝑖  at time t for maturity date T and underlying i can be generated by combining a call and a 

put of maturity T and of same strike K, according to put-call parity. This property is used to compute the futures' 
prices with the following benefits:  

• accuracy: the options market is often more liquid than the futures one (especially for equity 
underliers). 

• consistency: some quantities of interest (e.g. margins for the options) depend both on futures and 
options prices (e.g. through implied volatilities) so it is desirable to have data coming from the least 
possible number of sources in order to avoid discrepancies. 

 
For the current purpose, only the options where both calls and puts are available for a given maturity/strike 
couple (T,K) are considered. Because in-the-money (“ITM”) options are usually less liquid, it is desirable to 
select pairs of call/put options with the strike close to the futures price (which is, however, yet to be 
determined). As a fallback heuristic, the median synthetic future price derived from the 3 couples that have 
the strike closer to the underlying spot price Si is used (implicitly assuming a low value for the discount and 
dividend term). As a fallback, if no pairs of call/put for the same strike and maturity are available, the quoted 
futures price will be directly used.  
 

4.1.2 Synthetic futures price derivation  

Given the maturity-dependent, risk-free interest rate r, the price of a synthetic future of maturity T may be 
deduced for European options using put-call parity: 
 

𝐹𝑡,𝑇
𝑖 = 𝐾 + (𝐶𝑡,𝑇,𝐾

𝑖 − 𝑃𝑡,𝑇,𝐾
𝑖 )𝑒𝑟(𝑇−𝑡) (4.1) 

 

with 𝐶𝑡,𝑇,𝐾
𝑖  and 𝑃𝑡,𝑇,𝐾

𝑖  call and put option prices at time 𝑡 ∈ [1, 𝑁∗ + 1] with maturity T and strike K. 
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4.2 Synthetic futures returns 

4.2.1 Synthetic futures returns derivation 

The futures returns are calculated from the (synthetic) future prices, as logarithmic returns. Compared to 
arithmetic ones, logarithmic returns have the advantage of being additive, and this property is used afterwards 
for both the MPOR scaling, and the FX adjustment.  
 
Given the prices Ft,T for futures contracts of maturity T on date t (where the underlying dependency has been 
dropped for ease of notation), the daily logarithmic returns are calculated as: 
 

𝑝𝑡,𝜏 = 𝑙𝑛 (
𝐹𝑡,𝑇
𝐹𝑡−1,𝑇

)   ∀𝑡 ∈ [1, 𝑁∗] (4.2) 

 
where 𝜏 = 𝑇 − 𝑡 is the time-to-maturity, which is used to index the returns in the term-structure dimension. 
Note that returns are computed over Ft,T and Ft-1,T which are the prices for the same contract maturity on two 
consecutive days. For every time t, 𝑆(𝑡) = {𝜏1, , , 𝜏𝑠} represents the ensemble of all available interpolated time-
to-maturity points, assumed to be in ascending order without loss of generality. This ensemble depends on the 
available option maturities for a given date. 
 

4.3 Futures return pivot points 

4.3.1 Motivation for pivot points 

As stated above, the set of observable time-to-maturity points, collected in S(t), varies from one date to 
another. For the purposes of this methodology, it is necessary to use these points to interpolate a set of returns 
at a fixed set of defined points, for two reasons:  

• to have complete time series with constant statistical properties over the lookback window t = 1,…,N* 
for every risk factor; and 

• to allow for efficient reconstruction of futures returns at any required maturity. 
 
To ensure that the scenarios are free from any discontinuities that could arise from corporate actions, such as 
discrete dividends, interpolation is performed in the futures returns space rather than the futures price space. 
 

4.3.2 Definition of pivot points 

A set of pivot time-to-maturities 𝑃 = 𝜏1, … 𝜏𝑁𝜏  is defined to model the term structure of each index. As best 

practice, the selection of pivot points: 

• includes the spot (zero-time-to-maturity) so that 𝜏1 = 0; 

• have more pivot times-to-maturity at shorter maturities, to reflect the greater number of contracts, 
and greater liquidity at shorter maturities and 

• includes the farthest possible maturity, so that 𝜏𝑁𝜏  = 24 months. 

 
With these in mind, the following points were selected: {0, 1m, 2m, 3m, 6m, 9m, 12m, 18m, and 24m}. 
 

4.3.3 Interpolation from available data points to defined pivot points 

A linear interpolation is used: 
 

𝑝𝑡,𝜏𝑗 =
𝜏𝑗 − 𝜏𝑎

𝜏𝑏 − 𝜏𝑎
𝑝𝑡,𝜏𝑎 +

𝜏𝑏 − 𝜏𝑗

𝜏𝑏 − 𝜏𝑎
𝑝𝑡,𝜏𝑏    ∀𝑗 ∈ [1, … , 𝑁𝜏] (4.3) 
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where 𝜏𝑎 < 𝜏𝑗  and 𝜏𝑗 < 𝜏𝑏, representing the two time-to-maturities that are available in S(t) and closest to 𝜏𝑗. 

Because the spot is included, it is always possible to find a lower bound to interpolate from. For longer-dated 
maturities, however, it may be necessary to extrapolate from the furthest available data point. In the absence 
of a suitable upper pivot, flat extrapolation is used which is supported by the observation that long-dated 
futures typically exhibit very strong correlations: 
 

𝑝𝑡,𝜏𝑗 = 𝑝𝑡,𝜏𝑆       if     𝜏𝑗 > 𝜏𝑠 = max (𝑆(𝑡)) (4.4) 

 
Utilising both interpolation and, where necessary, extrapolation guarantees that these “futures return pivot 
points" can always be defined. A collection of 𝑁𝜏 futures returns is then stored at each date needed to build 
the lookback window, corresponding to 𝑁∗ × 𝑁𝜏 returns. For computational convenience, the returns over the 
pivot times-to-maturity can be collected into a matrix where row k contains the returns on day 𝑡 − 𝑘 + 1 and 
column j contains the returns for the jth pivot time-to-maturity: 
 

𝑝 =

(

 

𝑝𝑡,𝜏1 𝑝𝑡,𝜏2 … 𝑝𝑡,𝜏𝑁𝜏
𝑝𝑡−1,𝜏1 𝑝𝑡,𝜏2 … 𝑝𝑡,𝜏𝑁𝜏
… … ⋱ …

𝑝𝑡−𝑁∗+1,𝜏1 𝑝𝑡−𝑁∗+1,𝜏2 … 𝑝𝑡,𝜏𝑁𝜏)

  (4.5) 

 
Using these 1-day, unscaled returns (p) it is possible to construct a matrix of MPOR-scaled hypothetical returns 
(𝑟̂) representing the modelled distribution of scaled future returns at each pivot point over the 3-day MPOR 
horizon. Sections 7.2 and 7.3 provide further details on this transformation. 
 

𝑝 → 𝑟̂ =

(

 
 

𝑟̂𝑡,𝜏1 𝑟̂𝑡,𝜏2 … 𝑟̂𝑡,𝜏𝑁𝜏
𝑟̂𝑡−1,𝜏1 𝑟̂𝑡,𝜏2 … 𝑟̂𝑡,𝜏𝑁𝜏
… … ⋱ …

𝑟̂𝑡−𝑁∗+1,𝜏1 𝑟̂𝑡−𝑁∗+1,𝜏2 … 𝑟̂𝑡,𝜏𝑁𝜏)

 
 

 (4.6) 

 

4.4 Interpolation from pivot points to required maturities 

For every underlying index, a collection of MPOR-scaled returns over the lookback window has been computed 
at pivot maturities 𝜏1,… , 𝜏𝑁𝜏  as detailed above. It is therefore possible to re-interpolate the returns at the 

required time-to-maturity 𝜏. The same linear interpolation as in Section 4.3 is employed: 
 

𝑟̂𝑡,𝜏 =
𝜏 − 𝜏𝑎
𝜏𝑗𝑏 − 𝜏𝑗𝑎

𝑟̂𝑡,𝜏𝑗𝑎 +
𝜏𝑏 − 𝜏

𝜏𝑗𝑏 − 𝜏𝑗𝑎
𝑟̂𝑡,𝜏𝑗𝑏

   ∀𝑡 ∈ [1, … , 𝑁∗] (4.7) 

 
where 𝜏𝑗𝑎 < 𝜏 < 𝜏𝑗𝑏  is the closest bracketing using time-to-maturities available in the pivots P(t). Extrapolation 

is not required for this step, because the longest-dated pivot point (24m) represents the longest possible 
maturity for a traded market futures contract.  
 

4.5 Futures P&L scenarios 

Given 𝐹𝑡0(𝜏), the price on today's date t0 of a futures contract at time-to-maturity 𝜏, a set of price scenarios 

and a set of P&L scenarios is computed. The set of scenarios over horizon 𝛿ℎ (spanning h business days) for the 
futures prices (levels), denoted by   .  ̂𝑡, reads: 
 

𝐹̂𝑡0+ℎ
𝑡 (𝜏 − 𝛿ℎ) = 𝐹𝑡0(𝜏) 𝑒

𝑟̂𝑡0,𝜏      ∀𝑡 ∈ [1, 𝑁] (4.8) 

 

The set of P&L scenarios (variations), denoted by Δℎ .  ̂𝑡, reads: 
 

Δℎ𝐹̂𝑡0
𝑡 (𝜏) = 𝐹̂𝑡0+ℎ

𝑡 (𝜏 − 𝛿ℎ) − 𝐹𝑡0(𝜏)      ∀𝑡 ∈ [1, 𝑁] (4.9) 
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In case of mismatch between the currency of the index and the Clearing Participant margining currency, Eq. 4.9 
is replaced with the variation below, which incorporates the corresponding FX scenario:  
 

Δℎ𝐹̂𝑡0
𝑡 (𝜏) = 𝐹𝑋̂𝑡0+ℎ

𝑡 (𝐹̂𝑡0+ℎ
𝑡 (𝜏 − 𝛿ℎ) − 𝐹𝑡0(𝜏))      ∀𝑡 ∈ [1, 𝑁] (4.10) 

 
As with the futures return scenarios, FX scenarios are generated using the FHS approach which is detailed in 
Section 7.4. The calculation of returns in Eq. 4.10 reflects the fact that the FX exposure only affects VM, and 
not the full notional value of the futures contract. 
 
Once these variations have been calculated, the position-level P&L scenarios may be calculated by multiplying 
by the position size and quantity: 
 

𝑋𝑖𝜏
𝑡 = Δℎ𝐹̂𝑡0

𝑡 (𝜏)𝑄i,𝑆i         ∀𝑡 ∈ [1, 𝑁] (4.11) 

 
where: 

𝑋𝑖𝜏
𝑡  is the position-level P&L scenario (t) for futures contract i with time-to-maturity 𝜏 

Δℎ𝐹̂𝑡0
𝑡 (𝜏) is the single-contract-level P&L scenario (t) for futures contract i with time-to-maturity 𝜏 

𝑄𝑖  is the quantity of future i, in a given portfolio 

𝑆𝑖   is the contract size of option i, 
 
The position P&Ls can then be aggregated across all futures positions within the portfolio, along with those of 
the options positions, (see Section 5.4.3) to calculate the overall portfolio-level P&L scenarios:  
 

𝑋𝑡 =∑𝑋𝑖
𝑡

𝑖

          ∀𝑡 ∈ [1, 𝑁] (4.12) 

 
It is these portfolio-level P&L scenarios that are carried forward to the next stage of the FHS calculation (see 
Section 7.6). 
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5. Equity Index Options scenarios 

As is the case for equity index futures, the FHS calculation for options requires N=700 portfolio P&L scenarios. 
More specifically, the calculation requires 𝑁∗ = 𝑁 + ℎ − 1 daily P&L returns per instrument, where h denotes 
the MPOR. This section describes the computation of these scenarios, which will be used within the margin 
calculation described in Section 7.6.  
 
Futures prices and implied volatilities are key risk-factors required in the options pricing formula. Futures price 
scenarios have been covered in the previous section.  This section addresses implied volatility and option price 
scenarios specifically, focusing on vanilla European options. 
 

5.1 Inversion of implied volatility 

Modelling non-linear products requires computing the implied volatilities out of available options. The process 
of deriving implied volatilities from listed option market data requires the following inputs: 

• risk-free interest rate curve: inferred from vanilla interest rate products (sourced directly from market 
data vendors); 

• futures term structure: derived from listed option prices using the put-call parity formula (see Section 
4.1); and 

• vanilla option prices: used to invert the option pricing formula to derive the implied volatilities. 
 

5.1.1 Pricing formula inversion 

The derivation of implied volatility is based on the inversion of an option pricing formula.  As the pricing formula 
takes as input the underlying volatility, one looks for the volatility that matches the observed option price, 
resulting in the implicit definition of the so-called implied volatility: 

 

𝜎𝑖𝑚𝑝𝑙      solves     |𝑃(𝜎𝑖𝑚𝑝𝑙) − 𝑃
𝑀𝑎𝑟𝑘𝑒𝑡| = 0 

 

(5.1) 

Even in the simplest case of European options, there is no analytical solution for this inversion problem and the 
solution is computed numerically. As the option price is monotone in the volatility parameter, the unique 
solution is usually reached in a few iterations. If the optimizer does not converge to a solution, the data point 
is disregarded; this can happen because the option price violates some arbitrage constraints (e.g. price lower 
than the intrinsic value). 
 

5.1.2 European options pricing formula 

In the case of European option, the implied volatility can be derived by inverting Black's formula, which gives 
the price of such option as a function of volatility and futures price. It reads, in its general form for both calls 
and puts: 
 

𝑃(𝐹𝑡,𝜏, 𝜎) = 𝑒
𝑟𝜏(𝜙𝐹𝑡,𝜏Ν(𝜙𝑑1) − 𝜙𝐾Ν(𝜙𝑑2)) (5.2) 

  

𝑑1 =
𝑙𝑛 (

𝐹𝑡,𝜏
𝐾
) +

1
2
𝜎2𝜏

𝜎√𝜏
 

 

(5.3) 

𝑑2 = 𝑑1 − 𝜎√𝜏 (5.4) 

 
where 𝜙 = 1 for a call option and 𝜙 = 1 for a put option, 𝐹𝑡,𝜏 is the futures price at time t for time to maturity 

𝜏, r is the 𝜏-dependent risk-free rate of the underlying currency, K is the strike and 𝜎 is the implied volatility. 
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5.2 Fitting a volatility surface: extended Surface Stochastic Volatility Inspired model 

5.2.1 Arbitrage-free implied volatility surfaces 

The subsequent computations require implied volatilities at pairs (𝜏,m) of time-to-maturity and moneyness5 
points, that do not correspond to directly observable points, (i.e. quoted, options) and hence require 
interpolation. Rather than performing pointwise interpolations, it is deemed more accurate and efficient to 
calibrate a full volatility surface in an integrated manner. One of the main motivations is to ensure that the 
implied volatility surface is arbitrage-free, i.e. that the prices associated to any pairs of points (𝜏1,m1) and 
(𝜏2,m2) of the volatility surface do not yield riskless profit.  
 
For the calibration of implied volatility surfaces, the mixture of lognormals model6 is adopted as it guarantees 
both flexibility and arbitrage-free surfaces. 
 
This section briefly summarizes the eSSVI model of the implied volatility surface. In this model, the implied 
volatility of the underlying stock observed at each option expiry date is parametrized in terms of total variance 
w as: 
 

𝑤(𝑘|𝜃, 𝜌, 𝜓) =
𝜃

2
(1 + 𝜌𝜑𝑘 + √(𝜑𝑘 + 𝜌)2 + (1 − 𝜌2)) (5.5) 

 
where: 

k is the log-forward option moneyness, 
𝜃 is the at-the-money forward total variance parameter, 
𝜌 is the correlation between the price of the underlier and its implied volatility, which controls the 
skew of the implied volatility slice, 
𝜑 controls the curvature of the slice. 

 
Each slice is therefore described by three parameters, and it is necessary to impose conditions to ensure that 
the model does not permit any form of butterfly or calendar arbitrages. 
 
Following the methodology outlined in Cohort, Corbetta, Martini and Laachir (2018), for a given option expiry 
date, the log-moneyness (𝑘∗) and the implied total variance (𝜃∗) of the observed option closest to the at-the-
money are calculated. This leaves only two parameters are left to be calibrated for each expiry date (𝜌 and 𝜓) 
because the at-the-money forward total variance parameter can be approximated as 𝜃 ≅ 𝜃∗ − 𝜌𝜓𝑘∗, 
 
The following conditions are required to prevent butterfly arbitrages: 
 

−1 < 𝜌 < 1 (5.6) 

0 < 𝜓 < 𝑚𝑖𝑛 (
4

1 + |𝜌|
,
−2𝜌𝑘∗

1 + |𝜌|
+ √

4𝜌2(𝑘∗)2

(1 + |𝜌|)2
+

4𝜃∗

1 + |𝜌|
) (5.7) 

 
Also, in order to ensure that the at-the-money total variance parameter (𝜃) is always positive, the following 
additional constraint needs to be imposed: 
 

𝜓 <
𝜃∗

𝜌𝑘∗
       𝑖𝑓       𝜌𝑘∗ > 0 (5.8) 

 
Given the fitted model parameters for the preceding expiry date, (denoted with an underscore), the following 
conditions are needed in order to prevent calendar spread arbitrage: 

 

5 Defined as the natural logarithm of the ratio of the option strike and the underlying futures. 

6 D. Brigo, F. Mercurio, and G. Sartorelli. Alternative asset-price dynamics and volatility smile. Quantitative Finance, 3(3):173-
183, 2003. 
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𝜃 ≥ 𝜃 (5.9) 
𝜓 ≥ 𝜓 (5.10) 

|
𝜌𝜓 − 𝜌𝜓

𝜓 − 𝜓
| ≤ 1 (5.11) 

 
These last two can be combined as: 
 

𝜓 ≥ max (𝜓,
𝜓 − 𝜌𝜓

1 − 𝜌
,
𝜓 + 𝜌𝜓

1 − 𝜌
) (5.12) 

 
Finally, the condition in equation 5.12 can be expressed as: 
 

𝜓 <
𝜃∗ − 𝜃

𝜌𝑘∗
     𝑖𝑓     𝜌𝑘∗ > 0 (5.13) 

𝜓 >
𝜃∗ − 𝜃

𝜌𝑘∗
     𝑖𝑓     𝜌𝑘∗ < 0 (5.14) 

 

5.2.2 Fitting algorithm 

 
The calibration procedure, as presented in Cohort, Corbetta, Martini and Laachir (2018), is performed as 
follows. The fitting is performed on the earliest expiry date first and then on each subsequent expiry date in 
order of occurrence imposing, at each date, the time-arbitrage constraints based on the parameters calibrated 
for the previous expiry date. Within each maturity, the optimization is performed using the following steps: 

1. calculate 𝑘∗ and 𝜃∗ from observed option prices,  

2. perform an outer grid search on 𝜌,  

3. using the calibrated value for 𝜌, perform an inner one-dimensional optimization over 𝜓 with the 
bounds given in the previous section. 

 
The objective function of the optimization consists of the 𝐿1 norm of the differences between the model price 
and the market price of the options: 
 

min
𝜌
min
𝜓|𝜌
‖𝑃𝑚𝑜𝑑𝑒𝑙(𝜌, 𝜓) − 𝑃‖ (5.15) 

 
The following adjustments were applied to the algorithm above when calibrating the volatility surfaces using 
options data prior to go-live in order to improve the robustness of the results in cases where historical data 
was scarce. 

1. introducing a regularization term consisting of the 𝐿1 distance from the implied volatility slice given 
by the previous day fitted parameters (at slice if no previous parameters are available), 

2. replacing the time-arbitrage and buttery constraints, with soft constraints in the objective function,  

3. performing a grid search for values around 𝜃∗ 
 
Overall the calibration procedure is simple, robust and helps avoiding local minima.  

5.2.3 Monitoring of model fit 

The methodology relies on the algorithm outlined above to calibrate a volatility surface that is a good fit for 
the observed market data. For this reason, it is important to implement a check to ensure that the fit is good 
i.e. that the implied volatilities inferred from the calibrated surface are closely aligned with those calculated 
using observed market prices. To perform this check, the square root of the average squared error of the 
implied volatility is calculated for each index, on each business day. 
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Λ = √
1

𝑁𝑜
∑ (𝜎𝑜

𝑚𝑎𝑟𝑘𝑒𝑡 − 𝜎𝑜
𝑚𝑜𝑑𝑒𝑙)2

𝑜=1,….,𝑁𝑜

 (5.16) 

 
where, 

 𝜎𝑜
𝑚𝑎𝑟𝑘𝑒𝑡(𝑚𝑜𝑑𝑒𝑙)

: the market (model) implied volatility for option o 

 𝑁𝑜: the number of options quoted 

This metric is compared to a defined threshold value (ϖ). If this threshold is exceeded, the goodness of fit is 
deemed to be inadequate, and the implied volatilities at each pivot point are calculated by simple linear 
interpolation using the observable points nearest to each pivot point. The threshold value is defined based on 
analysis of historical surface calibration outcomes to identify instances where the calibration has been affected 
by poor or outlying data. 

5.3 Implied volatility pivot points  

Consider an option of price P(𝜏,m) on today's date t0, with time-to-maturity 𝜏 and moneyness m. In order to 
compute a risk measure, the margin model requires a distribution of possible outcomes from a set of P&L 
scenarios. For this option, the latter are computed from scenarios of: 

• the price of the futures contract with option time-to-maturity 𝜏; and 

• the implied volatility at option time-to-maturity 𝜏 and moneyness m. 
 
In order to derive implied volatilities at any combination of (𝜏;m), a set of pivot points is defined on a grid of 

time-to-maturities (𝜏𝑗)1≤𝑗≤𝑁𝜏
 and moneyness (𝑚𝑘)1≤𝑘≤𝑁𝑚. These pivot points are responsible for driving the 

dynamics of the entire implied volatility surface and interpolation is used to derive an implied volatility level at 
any arbitrary point of the surface. 
 

5.3.1 Implied volatility levels at pivot points 

The initial inputs for the option scenarios are quoted prices ((𝑃𝑡,𝑜)1≤𝑜≤𝑁𝑜𝑡
)
1≤𝑡≤𝑁∗

 for each date t in the 

lookback window and for whatever available time-to-maturity and moneyness of a generic option o. 
 
On each date t, a volatility surface can be fitted using the algorithm outlined in Section 5.2.2. Note that, for the 
purposes of this fitting process, if quoted option prices are available for both the call and put option for a given 
maturity and moneyness point, the out-of-the-money option will be used and the in-the-money-option will be 
ignored. This is because, as a general rule, out-of-the money options are typically more liquid than in-the-
money options.  Once this volatility surface has been fitted, the implied volatilities can then be derived at each 
pivot time-to-maturity and moneyness point: 
 

(𝑃𝑡,𝑜)1≤𝑜≤𝑁𝑜𝑡
→ (𝜆𝑖)1≤𝑖≤𝑛, (𝜇̅𝑖,𝑗, 𝜂𝑖,𝑗)1≤𝑖≤𝑛,1≤𝑗≤𝑚 → (𝜎𝑡,𝑗,𝑘)1≤𝑗≤𝑁𝜏,1≤𝑘≤𝑁𝑚

   ∀𝑡 

 
(5.17) 

As a result of this process, a time-series of implied volatilities at each implied volatility pivot point is derived. 
 

5.3.2 Implied volatility returns at pivot points 

Having fitted the implied volatility surface on all dates 𝑡 ∈ [1, 𝑁], it is then possible to compute returns at each 
pivot points as: 
 

∆𝜎𝑡,𝜏𝑗,𝑚𝑘 = 𝜎𝑡+1,𝜏𝑗,𝑚𝑘 − 𝜎𝑡,𝜏𝑗,𝑚𝑘      ∀𝑗, 𝑘 

 
(5.18) 
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for all dates t.  Note that the implied volatility returns are calculated as the arithmetic difference between each 
pair of volatilities, as opposed to the case of futures, described in Eq. 4.2, where logarithmic returns are used.  
 
All implied volatility returns can be collected in matrix form as below, with the elements of each row containing 
returns at every combination of time to maturity (𝜏) and moneyness (m). 
 

Δ𝜎 =

(

 

Δ𝜎𝑡,𝜏1,𝑚1 Δ𝜎𝑡,𝜏1,𝑚2 … Δ𝜎𝑡,𝑁𝜏,𝑁𝑚
Δ𝜎𝑡−1,𝜏1,𝑚1 Δ𝜎𝑡−1,𝜏1,𝑚2 … Δ𝜎𝑡−1,𝑁𝜏,𝑁𝑚

… … ⋱ …
Δ𝜎𝑡−𝑁∗+1,𝜏1,𝑚1 Δ𝜎𝑡−𝑁∗+1,𝜏1,𝑚2 … Δ𝜎𝑡−𝑁∗+1,𝑁𝜏,𝑁𝑚)

  (5.19) 

 

 

5.4 Options P&L scenarios 

5.4.1 Implied volatility scenarios at pivot points 

Using these historical returns, a set of MPOR-scaled volatility scenario returns is calculated by summing the 
historical returns over the t+h-1 consecutive observations. 
 

Δ𝜎̂𝑡,𝑗,𝑘 = ∑ Δ𝜎𝜃,𝑗,𝑘

𝑡+ℎ−1

𝜃=𝑡

 (5.20) 

 
This is performed over all time, moneyness and maturity points to produce a comprehensive set of scenario 
returns at all pivot points for all N historical scenario dates. 
 

Δ𝜎 → Δ𝜎̂ =

(

 

Δ𝜎̂𝑡,𝜏1,𝑚1 Δ𝜎̂𝑡,𝜏1,𝑚2 … Δ𝜎̂𝑡,𝑁𝜏,𝑁𝑚
Δ𝜎̂𝑡−1,𝜏1,𝑚1 Δ𝜎̂𝑡−1,𝜏1,𝑚2 … Δ𝜎̂𝑡−1,𝑁𝜏,𝑁𝑚

… … ⋱ …
Δ𝜎̂𝑡−𝑁∗+1,𝜏1,𝑚1 Δ𝜎̂𝑡−𝑁∗+1,𝜏1,𝑚2 … Δ𝜎̂𝑡−𝑁∗+1,𝑁𝜏,𝑁𝑚)

  (5.21) 

 
Using these MPOR-scaled volatility returns, a set of N volatility surface scenarios denoted by 𝜎̂ is computed by 
adding the current implied volatility to the corresponding volatility return at each maturity and moneyness 
point for all dates 𝑡 ∈ [1, 𝑁] in the lookback window. 
 

𝜎̂𝑡0+ℎ,𝜏𝑗,𝑚𝑘
𝑡 = 𝜎𝑡0,𝜏𝑗,𝑚𝑘 + Δ𝜎̂𝜃,𝜏𝑗,𝑚𝑘

𝑡        ∀𝑗, 𝑘, 𝑡 (5.22) 

 
The superscript t recalls that the scenario is built from historical data at date index t. 
 

5.4.2 Implied volatility scenarios at arbitrary point 

To recover the scenarios at the target time-to-maturity 𝜏 and moneyness m:  
 

(𝜎̂𝑡0+ℎ,𝑗,𝑘
𝑡 )

𝑗,𝑘
→ 𝜎̂𝑡0+ℎ

𝑡 (𝜏,𝑚) (5.23) 

 
a two-step process is performed as followed, (dropping the time and scenario notations): 

1. a pair of implied volatility scenarios (𝜎̂𝑗𝑎(𝑚), 𝜎̂𝑗𝑏(𝑚)) are built at the target moneyness 𝑚 using spline 

interpolation (with linear extrapolation) for the two closest time-to-maturity slices 𝜏𝑗𝑎  and 𝜏𝑗𝑏  at which 

pivot points are defined, 

2. the implied volatility scenario at data time-to-maturity 𝜏 is derived from these two points using a linear 
interpolation based on total variance 𝑉 = 𝜎2𝜏: 

 

𝜎̂2(𝜏,𝑚)𝜏 =
𝜏 − 𝜏𝑗𝑎
𝜏𝑗𝑏 − 𝜏𝑗𝑎

𝜎̂𝑗𝑎
2 (𝑚)𝜏𝑗𝑎 +

𝜏𝑗𝑏 − 𝜏

𝜏𝑗𝑏 − 𝜏𝑗𝑎
𝜎̂𝑗𝑏
2 (𝑚)𝜏𝑗𝑏  (5.24) 
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in order to guarantee that the scenarios produced are arbitrage-free. 

 
This interpolation is applied for the scenarios associated with all dates 𝑡 ∈ [1, 𝑁] in the lookback window. 
 

5.4.3 Option P&L scenarios 

Each P&L scenario is created with risk-factor scenarios from the same date t in the past, according to the 
following formula: 
 

Δℎ𝑃̂𝑡0
𝑡 (𝜏,𝑚) = 𝐹𝑋̂𝑡0+ℎ

𝑡 𝑃 (𝐹̂𝑡0+ℎ
𝑡 (𝜏 − 𝛿ℎ), 𝜎̂𝑡0+ℎ

𝑡 (𝜏 − 𝛿ℎ, 𝑚̂) + 𝜎
∗(𝑡0, 𝜏, 𝑚) − 𝜎(𝑡0, 𝜏, 𝑚))

− 𝐹𝑋(𝑡0)𝑃(𝐹(𝑡0, 𝜏), 𝜎
∗(𝑡0, 𝜏, 𝑚)) 

(5.25) 

 
where, 

𝐹̂ are the futures scenarios given in Eq. 4.8, 

𝑚̂ are the adjusted moneyness given 𝐹̂, 

𝜎∗ is the implied volatility derived from the quoted market price, 

𝜎 is the fitted model implied volatility, 

𝐹𝑋̂ and 𝐹𝑋 denote the scenarios and initial FX rate respectively. 
 
Time-to-maturity and moneyness are consistently adjusted over the scenarios. Contrary to futures contracts, 
FX is applied for the whole option value, which is in keeping with the margining process, and accurately reflects 
the impact of FX exposure on the potential closeout cost in the event of a Clearing Participant default. Note 
that the implied volatility scenarios are corrected by the term 𝜎∗(𝑡0, 𝜏, 𝑚) −  𝜎(𝑡0, 𝜏, 𝑚) which accounts for 
any potential initial mismatch between fitted and observed implied volatility (and prices).  
 
Once the P&L scenario has been defined for a single option, it is possible to scale by the position quantity and 
the contract size to calculate the position-level P&L scenarios for this contract: 
 

𝑋𝑖𝜏,𝑚
𝑡 = Δℎ𝑃̂𝑡0

𝑡 (𝜏,𝑚)𝑄i,𝑆i         ∀𝑡 ∈ [1, 𝑁] (5.26) 

 
where: 

𝑋𝑖𝜏,𝑚
𝑡  is the position-level P&L scenario (t) for option i with time-to-maturity 𝜏 and moneyness m 

Δℎ𝑃̂𝑡0
𝑡 (𝜏,𝑚) is the single-contract-level P&L scenario (t) for option contract i with time-to-maturity 𝜏 

and moneyness m 

𝑄𝑖  is the quantity of option i, in a given portfolio 

𝑆𝑖   is the contract size of option i, 
 
The position-level P&L scenarios can then be aggregated across all positions within the portfolio, along with 
those of the futures positions, (see Section 4.5) to calculate the overall portfolio-level P&L scenarios:  
 

𝑋𝑡 =∑𝑋𝑖
𝑡

𝑖

          ∀𝑡 ∈ [1, 𝑁] (5.27) 

 
It is these portfolio-level P&L scenarios that are carried forward to the next stage of the FHS calculation (see 
Section 7.6). 
 

6. Single Stock Options Scenarios 
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This chapter describes the computation of P&L scenarios for single stock options for margining purposes. The 
main difference between single stock options and equity index options arises due to the fact that single stock 
options are American options and, as such, may be exercised by the buyer on any day up to, and including, the 
expiry date. A more complex option pricing model must therefore be used to ensure that the price reflects this 
feature, and fully incorporates the impact that discrete dividend payments will have on the option value over 
its life. 
 
The key market risk factors that drive that drive changes in the value of single stock options are i) the spot price 
of the underlying  and ii) the implied volatility. The spot price scenarios used to compute single stock options 
scenarios are generated using the ClearisQ methodology for cash equities which is covered in the Cboe Clear 
Margin Model Description (Cash Equities and Exchange-Traded Products). The remainder of this chapter 
addresses the following issues: 

• pricing of American options, 

• derivation of the implied discrete dividends and repo rates, 

• fitting of the implied volatility surface, 

• generation of option P&L scenarios. 
 

6.1 Required Inputs 
 
The inputs used to generate single stock option scenarios for a given underlying are historical observations of: 

• the underlying price, 

• the option prices, 

• the risk-free rate curve, 

• the expected dividend dates. 
 

6.2 American Option Pricing Formula 
 
Unlike European options, there is no exact closed-form solution for pricing American options. There have been 
published, however, numerous analytical approximations and numerical schemes to price American options 
with, and without, discrete dividends. For the purposes of this methodology, a tree-based approach has been 
selected due to its simplicity and transparency, which has led to its widespread use within the industry. In the 
following section, three different tree-based approaches are presented, two of which incorporate a treatment 
of discrete dividends. The Cox-Ross-Rubinstein tree is introduced first, as it serves to illustrate many features 
used in the latter two approaches. 
 
6.2.1 Cox-Ross-Rubinstein Tree Algorithm 
 
ClearisQ implements a tree pricing algorithm with a binomial tree structure as in Cox-Ross-Rubinstein7. In the 
latter a geometric Brownian Motion with drift 𝜇 and volatility 𝜎is approximated by a tree in which the price 
can, at each node, move either up or down according to the following parameters: 
 

𝑢 = 1 𝑑⁄ = 𝑒𝜎√Δ𝑡 (6.1) 

𝑝𝑢 =
𝑒r𝑡Δ𝑡 − 𝑑

𝑢 − 𝑑
 (6.2) 

 
where: 

u and d denote the up and down total return movements respectively, 

 
7 John C Cox, Stephen A Ross, and Mark Rubinstein. Option pricing: A simplified approach. Journal of financial Economics, 
7(3):229{263, 1979. 
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Δ𝑡 is the time length of each step, derived as 𝑇 𝑁⁄ , where T is the option time-to-maturity and N is the 
chosen number of steps, 

𝑝𝑢 is the probability of an up-movement. 

rt is the risk-free interest rate applicable between times t and (𝑡 + Δ𝑡). 
 

This approach ensures that the distribution of the stock price at expiry matches the target distribution, while 
keeping the tree recombining and ensuring price convergence as Δ𝑡 → 0.  
 
After constructing the tree for the underlying price, the option value at each pricing node at the last time-step 
can be easily evaluated using the final option payoff formulas: 
  

𝑃𝑎𝑦𝑜𝑓𝑓𝑐𝑎𝑙𝑙 = 𝑚𝑎𝑥(𝑆 − 𝐾, 0) (6.3) 
𝑃𝑎𝑦𝑜𝑓𝑓𝑝𝑢𝑡 = 𝑚𝑎𝑥(𝐾 − 𝑆, 0) (6.4) 

 
For the pricing nodes at the time-step immediately prior to expiry, the option value is then derived as the 
discounted, probability-weighted average of the option values at the two successive nodes. For an American 
option, this value has to be further compared against the intrinsic value at the node and the maximum between 
the two is selected. Solving backwards over the whole tree, the option value at the origin node is derived. An 
example of an underlying tree and the associated option one is shown in Figure 6.1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Trees for underlying and option for a European call option with N=2. When solving backwards, the 
value 𝐶𝑢, for example, may be calculated as: 
 

𝐶𝑢 = 𝑒
−𝑟Δ𝑡(𝑝𝑢𝐶𝑢𝑢 + (1 − 𝑝𝑢)𝐶𝑑𝑢) (6.5) 

 
The pricing tree methodology implemented within ClearisQ uses the technique proposed by Broadie and 
Detemple8 to smooth the option payoff and improve convergence. Using this method, the recursion is started 
at step N-1, with the European option values evaluated using the Black-Scholes pricing formula and the 
underlying equity prices at the corresponding price nodes, instead of starting with the terminal option payoff 
at step N. This approach is designed to avoid the discontinuity of the terminal payoff and ensure that the 
calculated price of the option is less sensitive to the specific choice of time increment and pricing nodes. This 
enhancement is possible due to the fact that, over the discrete tree time grid, the option is, in practice, 
European at the second-to-last time step, as no exercise would be possible between these time steps. 
 
The Cox-Ross-Rubinstein method described above would be useful for pricing options on any underlying stock 
that doesn’t pay discrete dividends, however the inclusion of dividends presents a problem. On the ex-date of 
a dividend there is typically a jump downwards in the price of a stock which reflects the fact that any shares 
purchased on or after that date are not eligible to receive the dividend. When these discrete jumps are 
modelled within a pricing tree, they may lead to additional instances where it is optimal for an option holder 

 
8 M. Broadie, J. Detemple, American option valuation: new bounds, approximations, and a comparison of existing methods, The 
Review of Financial Studies, Winter 1996 Vol. 9, No. 4, pp. 1211–1250 
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to exercise early. This, by extension, can lead to a change in the calculated option value. For this reason, it is 
necessary to use a method that incorporates these expected dividends. 
 
 
6.2.2 Hull Method 
 
Hull’s approach9 builds upon the methodology of Cox, Ross and Rubinstein and aims to incorporate expected 
discrete dividends by assuming that the underlying price 𝑆𝑡 can be represented as: 
 

𝑆𝑡 = 𝑆𝑡
∗ + ∑ 𝑑𝑓(𝑡, 𝑡𝑖)𝐷𝑖

𝑖;𝑡𝑖>𝑡

 (6.6) 

 
where: 

𝑆𝑡
∗ is the stochastic portion of the stock price, which follows a geometric Brownian Motion with a drift 

equal to the risk-free rate minus the repo rate, 

𝑑𝑓(𝑢, 𝑣) is the risk-free discount factor between times u and v, 

𝑡𝑖 is the time of the i-th dividend, 

𝐷𝑖  is the size of the i-th dividend, 
 
This model divides the stock price into two components: One component reflects the present value of the 
expected future dividends and is assumed to be fixed. The other, remaining component is assumed to be 
stochastic, with a value that is described with a geometric Brownian Motion with a drift equal to the risk-free 
rate. 
 
This model admits a closed-formed solution for the European price, similar to the standard Black-Scholes 
formula with the strike adjusted for the dividends. American options can be priced using a standard tree for 
𝑆𝑡
∗, constructed as described in Section 6.2.1, and the option payoff is calculated at each node evaluating 𝑆𝑡 as 

defined in Equation 6.3.  
 
Although analytically tractable, the model has a major drawback: the calculated option prices, and 
consequently the implied volatilities, are assumed to be dependent on all future dividends, even those beyond 
the option’s expiry date. This dependence on all future dividends makes it impossible to use a bootstrapping 
process to estimate future dividends using the observed option prices. Furthermore, the addition of, or removal 
of an anticipated future dividend from the calculation can induce a spurious jump in the implied volatility time 
series. Additions and removals of this kind would naturally occur over time as some options expire and new 
options are listed. 
 
6.2.3 Vellekoop Method 
 
Vellekoop and Nieuwenhuis10 approach models the price of the underlying stock as a geometric Brownian 
Motion with deterministic11 jumps observed at dividend times, i.e. 
 

𝐴𝑡 = − ∑ 𝐷𝑖
𝑖;𝑡𝑖≤𝑡

 (6.7) 

 

9 Section 21.3 of John C Hull. Options futures and other derivatives. Pearson Education India, 9th edition, 2015., 
10 Michel H Vellekoop and Johannes W Nieuwenhuis. Efficient pricing of derivatives on assets with discrete dividends. Applied 
Mathematical Finance, 13(3):265{284, 2006. 
11 In cases where the price immediately prior to the expected dividend is less than the expected dividend, the dividend is 
assumed to be capped at the equity price, and hence the equity price will jump to zero upon payment of the dividend. This 
assumption is easily embedded in the numerical algorithm described below. 
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𝑑𝑆𝑡 = 𝑟𝑡𝑆𝑡−𝑑𝑡 + 𝜎𝑆𝑡−𝑑𝑊𝑡 + 𝑑𝐴𝑡 (6.8) 
 
where: 
 𝐷𝑖  is the amount of the dividend paid at time i 
 0 < 𝑡𝑖 ≤ 𝑡 is the set of times until the dividends. 
 
This model is a natural extension of the Black-Scholes dynamics to the discrete dividend case. In contrast to 
Hull's methodology, each option price depends only on future dividends prior to the option’s maturity, which 
makes it possible to adopt a bootstrapping procedure to infer future dividends from quoted option prices.  This 
approach, however, does not allow for the calculation of option prices using a closed form solution and hence 
it is necessary to employ a more sophisticated tree algorithm, which includes an interpolation step at each 
dividend date. 
 
The example below illustrates firstly how this model can be used to price an option in a case where future 
dividends, repo rates and implied volatility are all known with certainty. It then illustrates how this process can 
be inverted to infer these inputs using a set of observed option prices. In both cases, the example uses the 
observed equity spot price, as well as the risk-free interest rate. 
 
To demonstrate this approach, the example below describes a case where there is only one dividend before an 
option expiry date, defined by the time-to-payment (𝑡1) and value (𝐷1).  The forward price of the underlying 
stock at time t for maturity T is defined as: 
 

𝐹𝑡(𝑇) = 𝑆𝑡𝑒
∫ (𝑟𝑠−𝑞𝑠)𝑑𝑠
𝑇
𝑡 − ∑ 𝑒

∫ 𝑟𝑠𝑑𝑠
𝑇
𝑡𝑖 𝐷𝑖

𝑖:𝑡<𝑡𝑖<𝑇

 (6.9) 

 
Where 𝑞𝑠 represents the difference between the risk-free rate and the interest rate that is derived from options 
prices for a specific underlying stock, and option expiry date. This parameter is hereafter referred to as the 
“repo rate”. 
 
On the pricing tree the dividend is mapped to closest time node on the discrete time grid which is greater than 

the time-to-payment (𝑡̃1) as (𝐷1𝑒
𝑟(𝑡1−𝑡1)).  Firstly, a standard tree is built with initial price 𝑒−𝑟𝑇𝐹0(𝑇), drift r 

and volatility 𝜎2. The tree is solved backwards until 𝑡̃1 to get a vector of equity prices, s, and option values, o, 
at the time-node immediately after the dividend. A new tree is then constructed up to 𝑡̃1 with initial price  

𝑒−𝑟𝑡1𝐹0(𝑡̃1)(= 𝑆𝑡) resulting in an underlying price grid, 𝑠−, at the time-node immediately prior to the dividend. 

The associated vector of option values at the time-node immediately prior to the dividend, (𝑜−), are then 

obtained as: 
 

𝑜− = 𝑚𝑎𝑥{𝑓(𝑚𝑎𝑥(𝑠− − 𝐷𝑡 , 0)|𝑠, 𝑜), 𝑔(𝑠
−)} (6.10) 

 
where 

𝑓 (𝑥1|𝑥0, 𝑦0) is an interpolant which, given input vectors of paired observations (𝑥0 and 𝑦0), returns a 

vector of expected values of y for a given vector 𝑥1 

𝑔(. ) is a function which returns the payoff from exercise. 
 
The chosen interpolation method is linear, as tested in Vellekoop and Nieuwenhuis’ original article1213. Given 
𝑠− and 𝑜−, a new pricing tree is built in order to derive the current option price at time zero. This method may 

be extended to include multiple dividends, with option prices at each associated ex-date being similarly 

 

12 Michel H Vellekoop and Johannes W Nieuwenhuis. Efficient pricing of derivatives on assets with discrete dividends. Applied 
Mathematical Finance, 13(3):265{284, 2006. 
13 The input data points 𝑠 and 𝑜 are enriched with additional points based on the asymptotic values of the options in order to 

avoid extrapolation. 
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interpolated using the method outlined above. This interpolation step ensures that the pricing grid at these 
points is regularised with respect to the price of the underlying, such that the pricing tree recombines. Without 
this step, the number of pricing nodes would increase dramatically such that the approach would be impractical 
from a computational perspective.    
 
6.2.4 Derivation of implied volatility 
 
As with European options implied volatility levels are interpolated by minimizing the difference between the 
model price, calculated using the chosen option pricing model, and the observed market price. 
 

𝜎𝑖𝑚𝑝𝑙      𝑠𝑜𝑙𝑣𝑒𝑠     |𝑃(𝜎𝑖𝑚𝑝𝑙) − 𝑃
𝑀𝑎𝑟𝑘𝑒𝑡| = 0      

𝑓𝑜𝑟     𝑃(𝜎𝑖𝑚𝑝𝑙 = 500%) ≥ 𝑃
𝑀𝑎𝑟𝑘𝑒𝑡 > {

𝑆0 − 𝐾     𝑓𝑜𝑟 𝑐𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛𝑠
𝐾 − 𝑆0     𝑓𝑜𝑟 𝑝𝑢𝑡 𝑜𝑝𝑡𝑖𝑜𝑛𝑠

 
(6.11) 

 

𝜎𝑖𝑚𝑝𝑙      𝑠𝑜𝑙𝑣𝑒𝑠     |𝑃(𝜎𝑖𝑚𝑝𝑙) − 𝑃
𝑀𝑎𝑟𝑘𝑒𝑡| = 0     𝑓𝑜𝑟     0% < 𝜎𝑖𝑚𝑝𝑙 ≤ 500% (6.12) 

 
 
A standard Brent algorithm, bounded within [0%; 500%], is adopted to find the option implied volatility. For 
this step, the smoothing technique, introduced in Section 6.2, is crucial to avoid numerical issues, due to the 
non-monotonicity of the tree pricing formula, and to ensure fast convergence. 
 
Note that the derived implied volatility values depend on the pricing formula used for the derivation and its 
underlying assumptions. For an American option in the exercise region, it is not possible to derive a single 
implied volatility because of the fact that multiple values of the implied volatility will all result in model prices 
that match the observed market price. For calibration purposes, options in the exercise region, identified as 
options with prices less than, or equal to, their intrinsic values are explicitly excluded from the surface-fitting 
algorithm. In addition, when generating the Greeks and scenarios for these options, the implied volatility is 
evaluated based on the fitted volatility surface rather than being calculated for each option independently. 
 

6.3 Derivation of Discrete Dividends  
 
Unlike European options, the expected ex-dates and the expected size of discrete dividends have to be 
considered when pricing American options in order to properly incorporate the possibility of early exercise. 
The expected ex-dates of the dividends can be inferred from historical dividend dates, or public 
announcements. Given these dates, it is possible to use observed option prices to infer the expected value of 
the dividends using additional numerical optimization routines and model assumptions. 
 
Inferring the dividend values in this way, rather than relying on external sources (e.g. projections by equity 
analysts), ensures that the model will produce consist estimates of the dividend values given the same set of 
inputs. As with implied volatilities, dividends inferred in this way should be interpreted as a model artefact, 
rather than a realistic forecast.  
 
The chosen calibration method relies on achieving consistency between the implied volatility of the American 
call and put option pairs with the same strike and expiry date. The implied dividends and repo rates are jointly 
derived by an algorithm that minimizes the sum of absolute differences14 between the implied volatility of the 
pairs of call and put options with the same strike and maturity15. i.e. 
 

𝑆𝐴𝐷𝜏𝑖 =∑|𝜎𝑐𝑎𝑙𝑙,𝜏𝑖,𝐾𝑖𝑗 − 𝜎𝑝𝑢𝑡,𝜏𝑖,𝐾𝑖𝑗|

𝑗

 (6.13) 

 

 

14 The algorithm uses a smooth approximation to the sum of the absolute differences to ensure convergence. 

15 It should be noted that the size of dividends inferred in this way will vary based on the model assumptions. 
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where: 

 𝑆𝐴𝐷𝜏𝑖  is the sum of absolute differences for expiry date 𝜏𝑖  

 𝜎𝑐𝑎𝑙𝑙,𝜏𝑖,𝐾𝑖𝑗 is the implied volatility of the call option with expiry date  𝜏𝑖  and strike 𝐾𝑖𝑗  

 𝜎𝑝𝑢𝑡,𝜏𝑖,𝐾𝑖𝑗 is the implied volatility of the call option with expiry date  𝜏𝑖  and strike 𝐾𝑖𝑗  

 
The calibration algorithm below uses the following notation. The American options are defined on a time-to-

maturity grid Τ = {𝜏𝑖 , 𝑖 = 1, … , 𝑛} and, for each maturity, on a strike grid 𝐾𝑖 = {𝐾𝑖𝑗 , 𝑗 = 1, … ,𝑚𝑖}. The times 

to the dividend ex-dates are defined as Τ𝐷 = {𝜏𝑘
𝐷, 𝑘 = 1,… , 𝑑}. The algorithm bootstraps the dividend values 

and the equity repo rates starting with the earliest expiry date, and then processes each successive expiry date 
in turn. The result of the algorithm is a set of dividend values associated with the input dividend dates and a 
set of repo rates associated with each expiry date. The repo rate, as it is defined here can reflect any other 
market effect, other than the dividend, which is not captured within the model and which would affect the 
forward price of the underlying. The algorithm incorporates a regularization term (p) over the repo term 
structure when they are calibrated jointly with the dividend values, to handle the fact that the repo rate and 
the dividend have a similar effect on the implied volatility of the options. 
 
Algorithm 6.1: Algorithm to infer dividends 𝑑∗ and repo rates 𝑦∗ from the prices of American options 

 
𝜏𝐵 ← 0, 𝑦 ← 0 
for 𝜏𝑀 𝜖 Τ do: 

  select N put-call pairs on this maturity closest in strike to the underlying price 
  if no put-call pairs available then 
   continue 
  end if 
 
  Τ∗ = {𝜏𝐷𝜖  Τ𝐷 | 𝜏𝐵 < 𝜏𝐷 ≤ 𝜏} 
  if Τ∗ is not empty then: 
   𝑑∗, 𝑦∗ ← arg𝑚𝑖𝑛 ∑ |𝜎𝑝𝑢𝑡(𝑑, 𝑦) − 𝜎𝑐𝑎𝑙𝑙(𝑑, 𝑦)| + 𝑝|𝑦 − 𝑦| 

   Collect 𝑑∗ for each 𝜏𝐷 𝜖 Τ∗ 
   Collect 𝑦∗ for 𝜏𝑀 
  else:  

   𝑦∗ ← arg𝑚𝑖𝑛∑|𝜎𝑝𝑢𝑡(𝑦) − 𝜎𝑐𝑎𝑙𝑙(𝑦)| 

   Collect 𝑦∗ for 𝜏𝑀 
end if 
 

𝜏𝐵𝜏𝑀, 𝑦 ← 𝑦∗ 
 end for 
 

6.4 Fitting of the Implied Volatility Surface 
 
6.4.1 De-Americanization of Option Prices 
 

Once dividends and repo rates have been inferred, it is possible to use the observed prices of American option 
to infer the prices of equivalent European options on the same underlier (“de-Americanisation”)16. This 
approach consists of calculating the implied volatility of an American option and using this to price the 
equivalent European option with the same contract specifications and market inputs. 

 
 
 

 

16 Olena Burkovska, Maximilian Gass, Kathrin Glau, Mirco Mahlstedt, Wim Schoutens, and Barbara Wohlmuth. Calibration to 
american options: numerical investigation of the de-americanization method. Quantitative Finance, 18(7):1091-1113, 2018. 

Prices of 
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Price using 
tree 
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Note that the procedure is performed for each option separately assuming a piece-wise log-normal dynamics 
and a different volatility for each maturity and strike. This is an approximation since a different underlying 
dynamic is assumed for each combination of maturity and strike. Fitting a consistent model for the underlying, 
or equivalently the implied volatility surface, directly on American option prices is not feasible due to the 
significant computational burden required to optimise the model parameters in the absence of a closed-form 
pricing formula. De-Americanisation allows for the separation of i) the step of deriving European option prices 
from the corresponding American option prices and ii) the fitting of a model on the latter. 
 
6.4.2 Fitting of European Prices using the Extended Surface SVI model 
 
Given the European prices derived in the previous section, a model for the whole volatility surface is calibrated 
in a similar manner to the procedure for Equity Index Options (see Section 5.2). 

 
 
 
 
 
 

 
6.4.3 Pivot-Points Derivation  
 
Given the model fitted in the previous section, the implied volatility at the selected pivot points can be 
evaluated, similarly to Index Options.  
 
 
 
 
 
 
These implied volatilities at the pivot points are transformed back into their American counterparts. This step 
consists in the inverse of the procedure described in Section 3.4.1. The piece-wise log-normal implied 
volatilities are therefore the risk-factors to be modelled. Note that working directly with the piece-wise log-
normal implied volatilities instead of the standard Black-Scholes implied volatilities allows to avoid performing 
an inversion over each scenario, while in both cases any guarantee of absence of arbitrage is lost while 
generating scenarios. 
 
 
 
 
 
 
Finally, implied volatility returns are derived by applying first differences to the reconstructed pivot point time-
series. 
 

6.5 Single Stock Option P&L scenarios 
 
The methodology for generating single stock option P&L scenarios is identical to that used to generate 
scenarios for equity index options, described in Section 5.4, apart from the fact that, in subsection 5.4.3 the 
Black formula used for pricing the options is replaced with the piece-wise lognormal tree-pricing formula 
described above. 
 

Log-Normal Implied Vol at Pivot Points, 
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Repo Rates 

Piece-wise Log-Normal Implied Vol at 
Pivot Points Invert over tree 

Model Parameters Log-Normal Implied Vol at Pivot Point 
Evaluation at Pivot 

Point 

Prices of European Options Volatility Surface Parameters Calibrate 
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6.6 Corporate Actions 
 

6.6.1 Introduction 

If a corporate action occurs with respect to a cash equity that is the underlier of a single stock option, then it 
may be necessary to apply changes to the contract specifications of that option position to ensure that both 
parties to the option trade are not unduly disadvantaged. The principal underlying any such changes is that the 
value of the position should not be affected. It is necessary to apply adjustments to the data used to construct 
the single stock options scenarios to ensure that these scenarios are not unduly affected. 

 

6.6.2 Adjustments to single stock options due to corporate actions 

 

In the case of a special dividend, rights issue or stock-split the affected options will be adjusted in several ways: 

• An adjustment factor will be calculated representing the ratio between the value of the stock after 
the corporate action relative to the value of the stock prior to the corporate action. 

• The strike price of each affected option will be multiplied by the adjustment factor. 

• In the case of a stock-split or reverse stock-split, the lot size of each affected option will be divided by 
the adjustment factor. 

In the case of a demerger or spin-off, a position in an option on  a single stock may be replaced with a position 
in an option on a basket of two or more underlying stocks. In these cases, it is not necessary to adjust either 
the strike or the lot size of the option contract. 

In each of the cases mentioned above, these changes would be affected on the ex-date of the corporate action 
and would be applied to all positions open as of end-of-day on the prior business date. In practice, this change 
would be affected by the following series of steps: 

1. The creation of a new option for each existing option, which would have i) a new, incremented, version 
number that allows for them to be distinguished from the options listed prior to the corporate action, 
and ii) new contract specifications that reflect the adjustments detailed above. 

2. The replacement of positions in the old option series with positions in the new option series. 

3. The delisting of the old options series. 

In the case of a special dividend, rights issue or stock-split, the adjustments detailed above would not lead to a 
change in the implied volatility of the option position. i.e. the implied volatility on the option position created 
as a result of the corporate action should, all other things being equal, be identical to the implied volatility of 
the option prior to the corporate action. For this reason, it is not necessary to apply any adjustment to the 
implied volatility pivot-points when generating the options scenarios. Corporate actions of this sort do, 
however, lead to a jump in the price of the underlying stock. If ClearisQ was to use a historical time-series of 
stock prices that had not been adjusted to correct for this jump, it would be interpreted as a market-driven 
price change which could lead to a spurious increase in the Initial Margin. For this reason ClearisQ will use a 
historical time-series of underlying equity prices that has been adjusted to correct for the impact of corporate 
actions when generating the single stock options scenarios17. For clarity, the historical observed values of the 
implied volatility will not re-calculated using these adjusted stock prices, as to do so would introduce a 
distortion to the historical implied volatility and, by extension, the option P&L scenarios. 

In the case of a spin-off, the price of the basket of stocks on the date of the corporate action will be identical 
to the price of the underlying stock immediately prior to the corporate action. Following the corporate action, 
ClearisQ will need to fit a volatility surface for, and construct option P&L scenarios for the basket option. In 

 
17 ClearisQ also uses historical equity prices that have been adjusted for corporate actions when calculating 
scenarios and, by extension, Initial Margin for cash equity positions.  
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order to do this it is necessary to calculate the price of the basket of equities for each date. This is done by 
taking the weighted sum of the constituents of the basket. 

 

𝑃𝑏𝑎𝑠𝑘𝑒𝑡 =∑𝑃𝑖𝑊𝑖
𝑖

 (6.14) 

 

 where: 

 𝑃𝑏𝑎𝑠𝑘𝑒𝑡  is the price of the equity basket, 

 𝑃𝑖  is the price of constituent i of the basket, 

 𝑊𝑖  is the weight of constituent i of the basket. 

 

 In order to calculate option P&L scenarios ClearisQ will use: 

• a combined series of historical prices comprised of i) the single stock prices observed prior to the 
corporate action, and ii) the basket prices observed after the corporate action 

• a combined series of historical implied volatilities comprised of i) the single stock implied volatility 
levels observed prior to the corporate action and ii) the basket implied volatility levels observed after 
the corporate action.  
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7. Filtered Historical Simulation 

The FHS methodology is based on the simulation of the distribution of future returns (scenarios) by sampling 
the realized past returns, scaled by the ratio of past and most recent volatility estimate. Compared to a 
historical simulation approach (HS), which directly identifies the scenarios with the past returns and thus 
assumes that returns are independent and identically distributed (i.i.d.), the FHS directly models the volatility 
dynamics, without making any parametric distributional assumptions. This point is a strong advantage as it 
allows to capture non-trivial statistical properties of real returns distributions, such as asymmetry (skewness), 
fat-tails (kurtosis), volatility clustering, and tail dependence. Finally, the FHS methodology is not limited to 
equity products and/or linear instruments and it will be here applied to futures and options.  
 
The computation of initial margins within the chosen FHS-CVaR model extends the methodology applicable to 
cash equity products cleared by Cboe Clear.  In this section, we describe in detail the computation of IM within 
the FHS model. 
 

7.1 Data inputs 

The inputs for the scenario generation steps are the time-series of the relevant risk-factors. In the case of equity 
index derivatives, the relevant risk factors are:  

• Futures relative logarithmic returns at pivot time-to-maturity points (see Section 4);  

• Implied volatility absolute returns at pivot time-to-maturity and moneyness points (see Section 5); and 

• FX spot rate relative logarithmic returns to account for potential mismatches between the risk factor 
time-series currency and the Clearing Participant margining currency. 

 

7.2 Volatility and residuals estimation 

One of the primary aims of the IM methodology is to capture the changes in volatility, and to use these to 
produce future return scenarios that are consistent with the present level of volatility18. To achieve this, the 
FHS incorporates a dynamic measure of market volatility.   
 
The starting assumption of the FHS model is that the returns are well modelled as: 
 

𝑝𝑡
𝑖 = 𝜎̂𝑡

𝑖𝜀𝑡
𝑖  (7.1) 

 

where 𝜀𝑡
𝑖  are normalised residuals (unit variance) and 𝝈̂𝒕

𝒊  is the forecasted instrument volatility on day t.  
 
The volatilities are estimated from the historical returns of futures pivot points (Eq.  4.5) using an Exponentially 
Weighted Moving Average model (EWMA): 
 

(𝜎̂𝑡
𝑖)
2
= 𝜆(𝜎̂𝑡−1

𝑖 )
2
+ (1 − 𝜆)(𝑝𝑡−1

𝑖 )
2
   ,      𝑡 ≥ 2 (7.2) 

  
The normalised residuals are then estimated as: 
 

𝜀𝑡̂
𝑖 =

𝑝𝑡
𝑖

𝜎̂𝑡+1
𝑖
  (7.3) 

 
Repeating the calculations (7.2) and (7.3) for all rows of the futures returns matrix (Eq. 4.5) gives the following 
matrix of normalised residuals: 
 

 

18 Only applicable to futures price returns. 
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𝜀̂ =

(

 

𝜀𝑡̂
1 𝜀𝑡̂

2

𝜀𝑡̂−1
1 𝜀𝑡̂−1

2

⋮ ⋮
𝜀𝑡̂−𝑁∗+1
1 𝜀𝑡̂−𝑁∗+1

2

    

… 𝜀𝑡̂
𝑀

… 𝜀𝑡̂−1
𝑀

⋱ ⋮
⋯ 𝜀𝑡̂−𝑁∗+1

𝑀
)

  (7.4) 

 

The estimation of the volatilities according to Eq. (6.2) requires the specification of a seed, the initial value 𝜎̂1
𝑖. 

Given the fully available return time series 𝑝𝑗  with j = 1, …, t, the seed value 𝜎1
2 is computed as the average 

over the first N0 squared returns and the values are propagated using recursion from there on. The selected 
value for N0 is 200 days, which corresponds approximately to twice the characteristic period of the EWMA for 
𝜆 = 0.99, and therefore reflects the timescale of the volatility process. 
 

7.3 Filtered scenarios generation 

Once determined, the normalised residuals can be used to generate a set of hypothetical MPOR-scaled (ie. h-
day) return scenarios for a defined number of scenarios 𝑁 (where h = 3 and 𝑁 = 700).   
 
To obtain h-day return scenarios, we sum 1-day residuals over h consecutive days in order to capture possible 
auto-correlations, ie. trending or mean-reverting behaviours.  The sums of residuals are then multiplied by the 
last available volatility, which under the EWMA volatility process assumption, is the one-day ahead forecast 
volatility. Note that the summation across residuals requires the use of logarithmic returns. 
 
The MPOR-scaled hypothetical return scenario for instrument i and scenario k is calculated as: 
 

𝑟̂𝑘
𝑖 = 𝜎̂𝑇+1

𝑖 ∑𝜀𝑇̂−𝑘+1−𝑗
𝑖

ℎ−1

𝑗=0

 (7.5) 

 
In matrix notation, the MPOR-scaled hypothetical returns are represented as: 
 

𝑟̂ =

(

 

𝑟̂1
1 𝑟̂1

𝑖

𝑟̂𝑘
1 𝑟̂𝑘

𝑖

⋮ ⋮
𝑟̂𝑁
1 𝑟̂𝑁

𝑖

    

… 𝑟̂1
𝐼

… 𝑟̂𝑘
𝐼

⋱ ⋮
⋯ 𝑟̂𝑁

𝐼)

  (7.6) 

 
Each column of (6.6) represents a set 700 scenarios of hypothetical 3-day returns for instrument i. 
 

7.4 FX treatment 

For products denominated in a currency different from the portfolio base currency (ie. EUR), simulations of the 
relevant currency pairs are also required.  The latter can be obtained by modelling the foreign exchange (FX) 

spot rate return 𝑝𝑡
𝑓𝑥

 for currency pair fx as: 
 

𝑝𝑡
𝑓𝑥
= 𝜎𝑡

𝑓𝑥
𝜀𝑡
𝑓𝑥

 (7.7) 

 
The MPOR-scaled hypothetical return scenario for currency pair fx and scenario k is then calculated in the same 
manner as described in Sections 6.2 and 6.3, with instrument i being replaced with currency pair fx. These fx 

return scenarios (𝑟̂𝑡
𝑓𝑥
) are then applied to the corresponding current FX spot rate 𝐹𝑋(𝑡0) to generate a set of 

N FX scenarios: 
 

𝐹𝑋̂𝑡0+ℎ
𝑡 = 𝐹𝑋(𝑡0)(𝑒𝑥𝑝(𝑟̂𝑡

𝑓𝑥
) − 1) (7.8) 
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The FX scenarios are then used, along with the corresponding futures and options return scenarios to calculate 
a set of P&L scenarios in the portfolio base currency. Eq. 4.10 and 5.25 illustrate how this is done for futures 
and options respectively. 
 

7.5 P&L scenarios 

7.5.1 Futures P&L scenarios 

The process to generate contract-level P&L scenarios  Δℎ𝐹̂𝑡0
𝑡 (𝜏) for a future of time-to-maturity 𝜏 for all dates 

𝑡 ∈ [1, 𝑁] of the lookback window is described in detail in Section 4.5.  
 
The returns scenarios used to generate these contract-level P&L scenarios are calculated using the FHS process 
described in Sections 6.2 and 6.3.  
 

7.5.2 Option P&L scenarios 

The process to generate contract-level P&L scenarios  Δℎ𝑃̂𝑡0
𝑡 (𝜏,𝑚)  for an option of time-to-maturity 𝜏 and 

moneyness m for all dates 𝑡 ∈ [1, 𝑁] of the lookback window is described in detail in Section 5.4.  
 
The inputs are return scenarios for the risk factors, namely futures returns at pivot time-to-maturity points and 
implied volatilities returns at pivot time-to-maturity and moneyness points. As described in Section 5.3.2, 
implied volatility scenarios are calculated based on absolute returns, rather than logarithmic, and are left 
unscaled in line with a pure HS methodology. The futures returns are calculated using FHS, as described in 
Sections 6.2 and 6.3, and are fully consistent with the calculation for futures P&L scenarios.  
 

7.6 Margin calculation 

7.6.1 Expected Shortfall risk measure 

Margin requirements are obtained by calculating an ES risk measure for the portfolio based on the matrix of 
simulated P&L scenarios. 
 
Given a random vector of portfolio P&L or return scenarios 𝑥⃗ = (𝑥1, … , 𝑥𝑁), the ES risk measure with 
confidence level 𝛼 is estimated as follows19: 
 

1. Sort 𝑥⃗ in ascending order, where 𝑥𝑖 ≤ 𝑥𝑖+1: 
 

𝑥⃗ = (

𝑥1
𝑥2
⋮
𝑥𝑁

) (7.9) 

 

2. Compute 𝑁𝛼 = ⌊𝑁(1 − 𝛼)⌋ where ⌊𝑦⌋ is the closest integer smaller or equal to 𝑦.  For example, if 
𝛼 = 99% then 𝑁𝛼 = 7 (for 𝑁 = 700). 

 

3. The ES (or conditional value-at-risk) is then estimated as the average of all scenarios up to, and 
including scenario 𝑁𝛼 

 

𝐸𝑆𝛼 =
1

𝑁𝛼
∑𝑥𝑛

𝑁𝛼

𝑛=1

 (7.10) 

 

 

19 Note that flooring to the closest integer is more conservative than applying interpolation to estimate the empirical quantile. 
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7.6.2 Portfolio margin limit rule 

The initial margin for a given portfolio is subject to a portfolio margin limit rule in accordance with Article 27(4) 
of the EMIR RTS.   
 
Accordingly, the portfolio IM is calculated as a weighted sum of the gross and net portfolio margins: 
 

𝐼𝑀𝐹𝐻𝑆 = (1 − 𝑐)𝐼𝑀𝑔𝑟𝑜𝑠𝑠
𝐹𝐻𝑆 + 𝑐. 𝐼𝑀𝑛𝑒𝑡

𝐹𝐻𝑆 (7.11) 

 
where 𝑐 = 0.8, and IM is expressed as a negative value.  Note that the additive property of the ES tail measure 

guarantees that 𝐼𝑀𝑛𝑒𝑡
𝐹𝐻𝑆 > 𝐼𝑀𝑔𝑟𝑜𝑠𝑠

𝐹𝐻𝑆 . 

 
The gross portfolio margin 𝐼𝑀𝑔𝑟𝑜𝑠𝑠

𝐹𝐻𝑆  is the sum of the individual instrument margins: 

 

𝐼𝑀𝑔𝑟𝑜𝑠𝑠
𝐹𝐻𝑆 =∑𝑓

𝐼

𝑖=1

(𝑤𝑖) (7.12) 

 

and the net portfolio margin 𝐼𝑀𝑛𝑒𝑡
𝐹𝐻𝑆  is the margin of the netter portfolio including the effect of diversification: 

  

𝐼𝑀𝑔𝑟𝑜𝑠𝑠
𝐹𝐻𝑆 = 𝑓 (∑𝑤𝑖

𝐼

𝑖=1

) (7.13) 

 
where 𝑓 denotes the ES function described in Section 6.3.  
 

7.6.3 Derivatives netting rule 

As an important particular case of netting, derivatives with the same underlying are considered as products for 
which full netting is allowed because their correlation stems by construction from a sufficiently fundamental 
and stable reason. As a result, all components of the portfolio that have the same underlying can be aggregated 
at scenario level as if they were one instrument and the aggregation described in the previous section applies 
to the netted scenarios across underliers.   
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8. Anti-Procyclicality Measure 

Article 28 of the EMIR RTS sets out requirements for CCPs to limit the procyclicality of margin requirements to 
the extent that the soundness and financial security of the CCP is not adversely affected.   
 
To comply with these regulatory requirements, Cboe Clear applies an anti-procyclicality (APC) measure in the 
form of a stressed historical simulation (StressHS) margin which aims to reduce the procyclicality of the stand-
alone FHS IM (ie. by applying the option set out under Article 28(1)(b) of the EMIR RTS).  
 
The APC-compliant margin is then computed as the weighted sum of the FHS and the StressHS margins. 
 
This section describes in detail the computation of the StressHS margin component and resultant APC-
compliant margin. 
 

8.1 StressHS margin  

The StressHS margin component is based on a historical simulation, expected shortfall methodology. 
Simulation scenarios are obtained by combining a set of 650 of the recent past returns with a set of 50 returns 
that correspond to defined historical dates of exceptional market stress.  The margins calculated using this 
model represent the potential expected loss for a given portfolio in stressed market conditions. 
 
The incorporation of a less-variable margin component, derived from a relatively stable set of historical periods 
of stress provides for a conservative margin estimate that is less sensitive to the current dynamics of market 
volatility.  As a result, margin requirements are more conservative during low volatility periods and less variable 
during high volatility periods. 
 

8.1.1 Data inputs, scenario generation, and P&L scenarios 

The StressHS computations are based on a combination of a set of historical stress scenarios with a set of the 
most recent scenarios, which together generate the set of simulated scenarios. 
 
The 50 historical stress scenarios correspond to the Cboe Clear stress-testing scenario dates, which are defined 
by Cboe Clear as part of its overall stress testing framework.  The selection and review of these stress scenarios 
is performed on a periodic basis and is subject to internal risk management and regulatory governance.  
Currently, Cboe Clear’s stress-testing scenario suite contains 50 historical stress scenarios covering all relevant 
markets that Cboe Clear clears. 
 
The 50 historical stress scenarios are complemented by the (𝑁 − 50) most recent 3-day unscaled scenarios in 
the lookback period to form a total of 𝑁 unscaled scenarios.  The total length of the simulation window is 𝑁 =
700 scenarios20, and therefore the most recent 650 unscaled scenarios are included21.  
 
In accordance with ESMA regulatory guidelines, the StressHS margin component is based on unscaled 
(unfiltered) historical scenarios, and therefore the EWMA normalisation process described in Section 6 is not 
used for the generation of StressHS scenarios. 
 
The processes described in Sections 4 and 5 can be used to directly generate a set of unscaled h-day P&L 
scenarios for the required number of recent lookback scenarios 𝑁 − 50 (ie. 700 - 50 = 650) and for each stress 
period.   

 

20 The inclusion of 50 stress scenarios in the total simulation window of 700 scenarios is therefore sufficient to cover the tail of 
the distribution at the chosen confidence level (99%). 

21 Without duplication of scenarios, ie. where a scenario in the (𝑁 − 50) lookback period corresponds with a stress scenario, it 
is treated as an invalid scenario for the purposes of scenario generation. 
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8.1.2 Margin calculation 

Finally, the StressHS margin, 𝐼𝑀𝑆𝐻𝑆, is computed similarly to Section 6.6, where the gross and net portfolio 
margin estimates are obtained by calculating ES risk measures for the portfolio based on the simulated P&L 
scenarios in matrix 𝑤𝑆𝐻𝑆, and the portfolio IM is calculated as a weighted sum of the gross and net portfolio 
margins in accordance with the portfolio margin limit rule. 
 
Accordingly, the portfolio IM is calculated as a weighted sum of the gross and net portfolio margins: 
 

𝐼𝑀𝑆𝐻𝑆 = (1 − 𝑐)𝐼𝑀𝑔𝑟𝑜𝑠𝑠
𝑆𝐻𝑆 + 𝑐. 𝐼𝑀𝑛𝑒𝑡

𝑆𝐻𝑆 (8.1) 

 
where,  
 

𝐼𝑀𝑔𝑟𝑜𝑠𝑠
𝑠𝐻𝑆 =∑𝑓

𝐼

𝑖=1

(𝑤𝑖
𝑆𝐻𝑆) (8.2) 

 

𝐼𝑀𝑔𝑟𝑜𝑠𝑠
𝑆𝐻𝑆 = 𝑓 (∑𝑤𝑖

𝑆𝐻𝑆

𝐼

𝑖=1

) (8.3) 

 
and where again 𝑐 = 0.8, 𝑓 denotes the ES function described in Section 6.6.1, the derivatives netting rule 
described in Section 6.6.3 applies, and IM is expressed as a negative value.    
 

8.2 APC-compliant margin 

Once the StressHS margin component has been calculated as per Eq. 7.1, it is combined with the FHS margin 
calculated as per Eq. 6.11 to produce the unfloored APC-compliant margin in accordance with Article 28(1) of 
the EMIR RTS: 
 

𝐼𝑀𝑢𝑛𝑓𝑙𝑜𝑜𝑟𝑒𝑑
𝐴𝑃𝐶 = (1 − 𝜂)𝐼𝑀𝐹𝐻𝑆 + 𝜂. 𝐼𝑀𝑆𝐻𝑆  (8.4) 

 
where 𝜂 = 0.25. 
 
The final, floored APC margin is then calculated as the max of the floored APC and the 𝐼𝑀𝐹𝐻𝑆  margin 
component. This step is undertaken to ensure that, during times of heightened market volatility, the APC 
margin will never drop below the level of the unadjusted 𝐼𝑀𝐹𝐻𝑆 .  
 

= max(𝐼𝑀𝑢𝑛𝑓𝑙𝑜𝑜𝑟𝑒𝑑
𝐴𝑃𝐶 , 𝐼𝑀𝐹𝐻𝑆) (8.5) 

 
 

9. Treatment of equity collateral (Collateralised Underlying Exposure) 

As part of the single stock options clearing service, Cboe Clear offers Clearing Participants the ability to provide 
equity securities for the purposes of generating risk and margin offsets against cleared single-name equity 
option positions. Margin offsets of this kind will only be applicable in cases where the single stock options 
positions reference the equity provided, and any offset will be limited by the extent to which simulated price-
shifts in these equity securities serve to offset the simulated price-shifts in the single-stock options. 

9.1 Equity collateral P&L scenarios 

When equity collateral is provided by a Clearing Participant, Cboe Clear will generate FHS and StressHS 
scenarios for each equity, in line with the ClearisQ methodology for cash equities which is covered in the Cboe 
Clear Margin Model Description (Cash Equities and Exchange-Traded Products). Note that, per Section 6, this 
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methodology is also employed to generate the equity spot price scenarios that are used to generate the single 
stock options price scenarios. 
 

9.2 Calculation of Derivatives Initial Margin Offset 

Once equity collateral FHS and StressHS P&L scenarios have been calculated, these are combined with the 
corresponding single stock option FHS and StressHS P&L scenarios to determine whether an offset exists, and 
what the value of the offset should be. To do this, it is necessary to sum the P&L of all options on a given 
underlying. The FHS P&L scenarios for single stock options instruments referencing a given underlying can be 
expressed as: 

 

𝑥̂ =

(

 

𝑥̂1
1 𝑥̂1

𝑖

𝑥̂𝑘
1 𝑥̂𝑘

𝑖

⋮ ⋮
𝑥̂𝑁
1 𝑥̂𝑁

𝑖

    

… 𝑥̂1
𝐼

… 𝑥̂𝑘
𝐼

⋱ ⋮
⋯ 𝑥̂𝑁

𝐼 )

  (9.1) 

 
Each column of 𝑥̂ represents a set 700 FHS P&L scenarios for single stock option instrument i referencing a 
given underlying equity. These scenarios are summed by scenario, resulting in a vector containing a single 
netted P&L observation for each of the 700 FHS and StressHS scenarios. When performing this summation, the 
proxy scaling factor described in Section 10 is applied (i.e. any P&L scenario which is flagged as proxied, and 
which generates a risk offset will be multiplied by the proxy scaling factor 𝜙). 
 

𝑥̂ =

(

 

∑ 𝑥̂1
𝑖

𝑖

∑ 𝑥𝑘
𝑖

𝑖

⋮
∑ 𝑥̂𝑁

𝑖
𝑖 )

   (9.2) 

 
Similarly, the P&L scenarios generated for the corresponding equity collateral can be expressed as: 
 

𝑚̂ = (

𝑚̂1
𝑚̂𝑘
⋮
𝑚̂𝑁

)  (9.3) 

 
For each scenario, the adjusted scenario P&L is then calculated based on the corresponding single stock option 
and equity collateral P&L scenarios using the formula below.  
 

𝑑̂𝑘 = {
min(∑ 𝑥̂𝑘

𝑖
𝑖 + 𝑚̂𝑘, 0)          𝑖𝑓          ∑ 𝑥̂𝑘

𝑖
𝑖 < 0 𝑎𝑛𝑑 𝑚̂𝑘 > 0 

∑ 𝑟̂𝑘
𝑖

𝑖                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (9.4) 

 
Applying the offset in this way ensures that the equity collateral is only used within the model in cases where 
it serves to offset the risk of the corresponding single stock option positions. The inclusion of the equity 
collateral in this way will never lead to an increase in Initial Margin, nor will it serve to offset the risk on any 
other instruments within the portfolio. With this adjustment applied to all scenarios, the vector of adjusted 
P&L scenarios for the given equity underlying can be expressed as: 
 

𝑑̂ =

(

 

𝑑̂1
𝑑̂𝑘
⋮
𝑑̂𝑁)

   (9.5) 

 
This vector of adjusted scenario P&Ls is then carried forward to the subsequent stages of the Expected shortfall 
calculation detailed in Section 7.6.1. This same adjustment process is carried out for the FHS and StressHS 
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scenarios and, in each case, the resulting vector of adjusted P&L scenarios is used in both the net and gross 
Expected Shortfall calculation.   
 

10. Treatment of missing data 

In this chapter the treatment of missing data is presented. Two cases are considered: 

• Forward-filling: missing values after the first available date for each individual risk factor time-series 
are forward filled. As a new observation is collected, the latter will results in practice in a return from 
the last available observation. From a scenarios perspective, a risk factor with multiple missing values 
will results in many zeros and few large returns, with the latter largely driving the margin value22. This 
approach is therefore considered conservative. 

• Proxying: missing data before the first available date for each individual risk factor time-series are 
proxied, i.e. filled, in some cases with a scaling factor, with the returns of a similar available time-
series. The proxying methodology differs across risk factors.  

In the rest of this chapter, the proxying methodology for the latter case, is described for each risk factor type. 

10.1 Proxying for equity underlying 

For equity underlying, a proxy instrument is chosen based on its domicile and sector23. A set of proxy indexes, 
each mapped to a country and/or a sector, is provided by the user. For each underlying, the proxy is selected 
among the available ones trying to match in the following priority order: 

• country and sector, 

• sector, 

• country. 
 
If no matches are found, a fallback proxy index is used. The choice of using domicile and sector indexes balances 
out the needs of having a tractable set of proxies, an extended coverage and a clear mapping between 
instruments and proxies. 
 
Our approach takes into account the fact that indexes are by construction less volatile than single equities and 
therefore a rescaling coefficient is applied. Explicitly for an instrument X with associated proxy index I, a missing 
return at time t is proxied according to: 
 

𝜌𝑡
𝑋 = 𝛽𝜙𝜌𝑡

𝐼 (10.1) 

 
 
Here 𝛽𝜖{−1,1} is the sign of the correlation between X and I, i.e. 𝛽 = 1 if Corr(𝜌𝑡

𝑋, 𝜌𝑡
𝐼) > 0 and 𝛽 = -1 if 

Corr(𝜌𝑡
𝑋, 𝜌𝑡

𝐼) < 0 where Corr(.) denotes the Pearson correlation. In order to limit the estimation errors a 
minimum of 𝑛𝛽 = 20 valid returns is required to compute 𝛽, otherwise a default value of 𝛽 = +1 is used.  

 
The proxy scaling factor 𝜙 in Eq. (6.1), which can be interpreted as the ratio of the instrument and index 
volatilities, determines the initial margin level and is set conservatively equal to 3, based on sensitivity analysis 
conducted on IPO stocks. As more underlying returns become available, the impact of 𝜙 decays exponentially, 
as per the EWMA volatility process. 
 

 

22 Note that, in the event that a zero risk factor return is observed, the EWMA formulation adopted in CleaRisQ uses the 
previously available volatility value which ensures that multiple missing observations do not result in a decrease in the estimated 
volatility and, by extension, the associated FHS margin. 

23 Defined according to the GICS Sector classification. 
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10.2 Proxying for index future curves 
 
Proxying of the future curve returns is required for a given underlying index when on a given 
date:  

• no underlying return is available, and 

• no future returns are available. 
 
If at least one return is observed, the standard interpolation/extrapolation rule is used to derive the risk factors 
at the pivot-point constant time-to-maturities. Note that extrapolated returns are marked as “proxied". When 
no returns over the whole term structure are observed, proxying is applied. For index futures, this only occurs 
over the stress date intervals and not over the standard lookback windows used both for daily margining and 
historical backtesting. A fallback index is defined for each stress date interval. If no returns are observed for 
given index and stress interval, the pivot-point returns from the fallback index are used over the whole term 
structure of that proxied index and they are all marked as “proxied". No scaling is applied, since the volatilities 
across indexes are comparable. 
 

10.3 Proxying for implied volatilities 
 
Proxying of the implied volatility surface is required for a given underlying when on a given date: 

• no options data are available at all, or 

• the criteria to perform the fitting are not met, )e.g. minimum number of options per maturity, 
minimum number of maturities, etc.), or 

• the fitting procedure failed. 
 
If the fitting process is successful, all pivot points are computed according to the fitted model. If it was not 
possible to fit a model on a given date, two different approaches apply for indexes and equities. 
 
10.3.1 Proxying for index implied volatilities 
 
If the underlying is an index, proxying will be required only over the stress date intervals and not over the 
standard lookback windows used both for daily margining and historical backtesting. A fallback index is defined 
for each stress date interval. If implied volatility returns cannot be derived for given index and stress interval, 
the pivot-point returns from the fallback index are used over the whole surface of that proxied index and they 
are all marked as “proxied". No scaling is applied, since the volatilities across indexes are comparable. 
 
10.3.2 Proxying for equity implied volatilities 
 
If the underlying is an equity, the proxy index is selected based on the following priority order: 

1. index containing the underlying as one of its constituents (if multiple indexes, select the one with least 
constituents), 

2. index matching the domicile of the underlying, 

3. fallback index. 
 
Proxying is performed for all implied volatility pivot points returns using the ratio of the EWMAs of the 
underlyings as scaling factor: 
 

𝜌𝑡
𝑋,𝜏,𝑚 =

𝜎𝑡
𝑋

𝜎𝑡
𝐼 𝜌𝑡

𝐼,𝜏,𝑚       ∀𝜏,𝑚 (10.2) 

 
where: 
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X denotes the proxied underlying, 

I is the index underlying, 

𝜌𝑡
𝑗,𝜏,𝑚

 is the return at time t of the implied volatility pivot point defined at time-to-maturity and 
moneyness m for the generic underlying j, 

𝜎𝑡
𝑗
 is the EWMA volatility at time t of the generic underlying j. 
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11. Margin add-ons 

In addition to underlying price volatility risk, Cboe Clear is also exposed to other specific risks which require 
separate treatment in the form of margin add-ons.  The following margin add-ons are applied by Cboe Clear 
and included in the total initial margin requirement:   

• Wrong-Way Risk (WWR) add-on 

• Liquidity Risk (LR) add-on 

• Large Position (LP) add-on  
 
This section describes the methodology for calculating the above margin add-ons.  
 

11.1 Wrong-way risk (WWR) add-on 

The WWR add-on addresses the specific wrong-way risk arising when a Clearing Participant has a long exposure 
to its own stock or those of an institution belonging to the same financial group. In this case, the position 
attracts a 100% fixed margin, reflecting the fact that in case of default the position could be worthless.   
 
In the case of index-based products, it is possible that a Clearing Participant's stock enters the composition of 
the index. In that case, their weight in the index 𝛼 is used to evaluate the loss assuming that, in a default, the 
Clearing Participant's stock prices go to zero, leading to the following add-on: 
 

𝑊𝑊𝑅𝑖 = max (Δ(𝑆, 𝑡0)𝛼𝜈𝑖 −
1

2
Γ(𝑆, 𝑡0)(𝛼𝜈𝑖)

2, 0) 

 
(11.1) 

 
where 𝛼𝜈𝑖  is the P&L of the underlying assuming the above, and where Δ and Γ are the aggregated deltas and 
gammas of the derivatives written on the underlying involving wrong-way risk. In theory, all the positions used 
to compute the initial margin should be reduced by 𝛼 within the IM methodology but, for computational 
efficiency, this correction is neglected, making the overall approach slightly more conservative. 
 
In the case of single stock options written on underlyings linked to a Clearing Participant, a scenario is 
constructed wherein the price of the underlying is assumed to drop to zero. In this scenario, the prices of all 
put options for those underlyings will be equal to their strikes, and the prices of all call options for those 
underlyings will be equal to zero. If, under this scenario, the P&L of all options written on a given underlying is 
negative, then this P&L will be multiplied by minus one and added to the WWR add-on. In the case that the 
P&L is positive, no change is made to the WWR add-on. 
 
For a given Clearing Participant, the portfolio WWR add-on is the sum of all position WWR add-ons: 
 

𝑊𝑊𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 =∑𝑊𝑊𝑅𝑖

𝐼

𝑖=1

 (11.2) 

 

11.2 Liquidity Risk (LR) add-on 

The LR add-on addresses the specific risk due to concentrated and/or illiquid positions in a Clearing Participant 
portfolio.  This add-on captures the potential price impact of liquidating such positions in the event of a Clearing 
Participant default. 
 
In such a case, liquidation of large and/or illiquid positions may incur additional costs beyond those captured 
in the standard margin computations, which address market risk only. The Liquidity Risk add-on described 
below is designed to capture the key risk factors on those portfolios, and to reflect the expected hedging and 
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liquidation strategy that would be applied by Cboe Clear in the event of a Clearing Participant default.  
Liquidation costs arising from offsetting positions across separate maturity buckets are accounted for within 
the vega liquidity risk component on a gross basis; in particular, positions of contracts expiring within MPOR 
are accounted for as a separate and stand-alone maturity bucket to prevent any offset benefit against other 
longer-dated maturities being allowed. The total liquidity risk add-on for each underlier for each portfolio is 
calculated as the sum of the directional delta liquidity risk add-on, the delta calendar spread liquidity risk add-
on, the vega bid-mid liquidity risk add-on and the vega concentration risk add-on. 
 
11.2.1 Directional delta liquidity risk add-on 
 
The delta liquidity risk add-on is calculated as the sum of the directional delta risk add-on and the calendar 
spread liquidity risk add-on. In order to compute the directional delta LR add-on, the following additional time-
series is needed for each underlying i:  

• the percentage bid-ask spread 𝑆𝑝𝑖,𝑡 , defined as: 

 

𝑆𝑝𝑖,𝑡 =
𝐴𝑠𝑘𝑖,𝑡 − 𝐵𝑖𝑑𝑖,𝑡

0.5(𝐴𝑠𝑘𝑖,𝑡 + 𝐵𝑖𝑑𝑖,𝑡)
 (11.3) 

 
 

• the daily traded volume24 denoted as 𝑉𝑖,𝑡. 

 
In the case of equity index futures, these values are calculated based on the front month future contract. In 
the case of single stock underliers, they are calculated based on the underlying equity. The directional delta LR 
add-on computed on day t for underlying instrument i, as percentage of the instrument price, is defined as: 
 

𝐿𝑅%𝑑𝑒𝑙𝑡𝑎,𝑖,𝑡 = 0.5𝑆𝑝̅̅ ̅𝑖,𝑡 + 𝜇𝑖𝜎𝑖,𝑡+1√
|Δ𝑖,𝑡|

𝑉̅𝑖,𝑡
 (11.4) 

  
where: 

𝑆𝑝̅̅ 𝑖̅,𝑡  is the simple average bid-ask spread computed over the last 250 observations of instrument i, 

 Δ𝑖,𝑡 is the total net delta for all options and futures in underlying i to be liquidated25, 

𝜇𝑖 is a coefficient measuring market impact, with default value equal to 1, 

𝑉̅𝑖,𝑡  is the average traded volume computed over the last 𝑁𝑙𝑖𝑞observations of 𝑉𝑡, and 

𝜎𝑖,𝑡+1 is the EWMA volatility computed on day t, as for instrument i (Eq. 6.2). 

 
In absolute terms, the delta LR add-on for a given underlier instrument i is given by: 
 

𝐿𝑅,𝑖,𝑡 = 𝑣𝑖,𝑡Δ𝑖,𝑡𝐶𝑖(𝐿𝑅%𝑓𝑢𝑡𝑢𝑟𝑒𝑠,𝑖,𝑡) (11.5) 

 
Where: 
𝑣𝑖,𝑡 is the last valid value of the position on instrument i. 

Δ𝑖,𝑡 is the net delta of the position in underlying instrument i to be liquidated on day t (expressed as the number 

of contracts) 
𝐶𝑖  is the contract multiplier or lot size of underlying instrument i.  
 

 

24 Where required, the primary listing of the instrument is used to avoid underestimating the instrument liquidity. 

25 For each Clearing Participant and for each index, position size is determined aggregating the deltas of all positions on the 
index across all accounts, so long and short positions are allowed to cancel out. 
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The first part of the LR add-on accounts for the exogenous liquidity component, which does not depend on the 
position size and it covers half of the bid-ask spread to reflect the use of mid-prices in the margin computations.  
 
The second part of the LR add-on accounts for the endogenous liquidity component, which considers the 
market impact of liquidating the position given the position size26.  As the position to be liquidated gets larger, 
it will incur additional costs. 
 
In cases where data inputs are missing:    

• If an observation 𝑆𝑃𝑖,𝑡 (or 𝑉𝑖,𝑡) is not available, the missing value is set equal to the last available rolling 

average 𝑆𝑃𝑖,𝑡−1 (or 𝑉𝑖,𝑡−1).   

• Where observations of 𝑆𝑃𝑖,𝑡 are not available at the start of the observation window, the spread time 

series is pre-filled with conservative default values, 𝑆𝑝𝑖
∗, set to 5% in order to start the rolling average 

calculation (typical bid-ask quotes for large caps are in the range of few percentage basis points).   

• Similarly, where observations of 𝑉𝑖,𝑡 are not available at the start of the observation window, the 

volume time series is pre-filled with conservative default values 𝑄𝑖/𝜋, where 𝜋 = 0.2.  This implies that 
on the first trading day, 𝑄𝑖/𝑉𝑖 = 𝜋.  In other words, it is assumed that any position in an IPO stock 
constitutes a fraction 𝜋 of the unknown tradeable volume27.  This assumption fades out progressively 
as actual volume data are observed.  For new IPOs, the volumes over the first week of trading are 
discarded as these are not representative of the standard market trading activity. 

 
 
 
For a given Clearing Participant, the total directional delta LR add-on on day t is calculated as: 
 

𝐿𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑑𝑒𝑙𝑡𝑎,𝑡 =∑𝐿𝑅𝑑𝑒𝑙𝑡𝑎,𝑖,𝑡

𝐼

𝑖=1

𝐹𝑋𝑖,𝑡 (11.6) 

Where: 
𝐹𝑋𝑖,𝑡 is the FX rate from the currency of underlying instrument i to the base currency (EUR). 

 
11.2.2 Delta calendar spread liquidity risk add-on 
 
The directional delta liquidity add-on is designed to address the liquidity cost associated with hedging the 
directional delta risk on the portfolio. The delta calendar spread liquidity add-on is designed to address the 
residual liquidity risk associated with liquidating the calendar spread risk that remains after the directional delta 
has been hedged. In order to estimate the potential liquidation cost of the residual calendar spread risk, it is 
first necessary to define a set of maturity buckets.  

Table 11.1: Delta calendar spread liquidity add-on maturity buckets 

Bucket Time to maturity start (years) Time to maturity end (years) 

1 0 0.25 

2 0.25 0.5 

3 0.5 0.75 

4 0.75 1 

5 1 1.5 

6 1.5 Infinity 

 

 

26 The shape of the market impact function has been widely investigated in the literature and the square-root form with 𝛾𝑖 = 1 
adopted in Eq. 5.4 has been shown to perform well with respect to observable trading data.  Commercial applications using 
the square-root form of the market impact include for instance Barra and Bloomberg. 

27 In practice, trades larger than 10% of the daily volume are rarely observed. 
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The residual calendar spread delta is then calculated using the formulas below. This represents half the gross 
delta remaining on the portfolio after the net delta has been hedged using futures within the first maturity 
bucket, or using the underlying itself (in the case of single stock options). This is equivalent to the delta on one 
leg of the calendar spread which would be required to hedge the residual delta at each maturity bucket. 
 

𝐻𝑖 =∑Δ𝑚,𝑖
𝑚

 (11.7) 

 

Δ𝑚,𝑖,ℎ = {
Δ𝑚,𝑖 − 𝐻𝑖                   𝑚 = 1

Δ𝑚,𝑖                            𝑚 ≠ 1
 

 

(11.8) 

Δ𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟,𝑖 =
∑ |Δ𝑚,𝑖,ℎ|𝑚,ℎ

2
 (11.9) 

 
Where: 
Δ𝑚,𝑖  is the aggregated net delta for the m-th maturity bucket.  

Hi represents the total directional hedge trade which is executed in the underlying itself (in the case of single 
stock options), or in the front month future (in the case of equity index futures). 
In order to calculate the calendar spread liquidity add-on, the calendar spread delta must be multiplied by the 
bid-ask spread of a calendar position. The bid-ask spread of a calendar position is not directly observable, but 
can be estimated as a fixed percentage of the bid-ask of either i) the front month future or ii) (in the case of 
single stock options), the underlying equity. 
  

𝑆𝑝̅̅ ̅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟,𝑖,𝑡 = 𝑆𝑝̅̅ ̅𝑖,𝑡 . 𝐾 (11.10) 

 
The parameter K represents the ratio between the bid-ask spread of a calendar position to the bid-ask spread 
of an outright position in the underlier. This parameter is calibrated periodically based on the relative volatility 
of calendar spread positions vs outright positions in the underlier. The default value is 0.25, which was 
determined based on the 10 most liquid European equity index futures contracts. 
 
11.2.3 Vega bid-mid risk add-on 
 
The vega risk on a portfolio may be hedged by executing at-the-money straddles at each maturity bucket. The 
vega bid-mid add-on addresses the bid-to-mid cost associated with executing these hedging trades. A 
predefined constant 𝜎𝑚,𝑖

′̅̅ ̅̅ ̅ is a conservative estimate of both: 

i) the bid-to-mid cost of hedging one unit of vega for the 1st maturity bucket in underlying instrument i, 
and 

ii) the bid-to-mid cost of hedging one unit of vega-neutral at-the-money straddle calendar spreads 
between the 1st maturity bucket, and the m-th maturity bucket. (i.e. at at-the-money straddle calendar 
spread with an exposure of one unit of vega long (short) in the 1st maturity bucket and 1 unit of vega 
short (long) in the m-th maturity bucket. 

 
The vega bid-mid add-on for the m-th maturity bucket is calculated as: 
 

𝐿𝑅𝑣𝑒𝑔𝑎 𝑏𝑖𝑑−𝑚𝑖𝑑,𝑡,𝑚,𝑖 = 𝑣𝑚,𝑖𝜎𝑖
′̅ (11.11) 

 
 
 
Where: 
𝑣𝑚,𝑖  is the aggregated vega for the m-th vega maturity bucket for all option positions on underlying instrument 

i.  
 

𝜎𝑖
′̅ = max

𝑚
(𝜎𝑖,𝑚

′̅̅ ̅̅ ̅) (11.12) 
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𝜎𝑚,𝑖
′̅̅ ̅̅ ̅ is calibrated periodically for each instrument and maturity bucket based on the average of the following 

metric over the preceding 250 trading days. This metric is designed to capture the bid-to-mid on the at-the-
money straddle, after the bid-to-mid cost of any residual delta risk has been removed. 
 

𝜎𝑚,𝑖
𝑙 = 0.5. ((𝐶𝑎𝑡𝑚,𝑎𝑠𝑘,𝑖,𝑚 + 𝑃𝑎𝑡𝑚,𝑎𝑠𝑘,𝑖,𝑚) − (𝐶𝑎𝑡𝑚,𝑏𝑖𝑑,𝑖,𝑚 + 𝑃𝑎𝑡𝑚,𝑏𝑖𝑑,𝑖,𝑚)

− |Δ𝑐,𝑎𝑡𝑚,𝑖,𝑚 + Δ𝑝,𝑎𝑡𝑚,𝑖,𝑚|. (𝑖𝑎𝑠𝑘 − 𝑖𝑏𝑖𝑑))  
(11.13) 

 
Where: 
𝐶𝑎𝑡𝑚,𝑎𝑠𝑘,𝑖,𝑚 is the ask price of the at-the-money call option on underlying instrument i at a maturity within 

bucket m  
𝑃𝑎𝑡𝑚,𝑎𝑠𝑘,𝑖,𝑚 is the ask price of the at-the-money put option on underlying instrument I at a maturity within 

bucket m  
Δ𝑐,𝑎𝑡𝑚,𝑖,𝑚 is the delta on the at-the-money call option on underlying instrument I at a maturity within bucket 

m. 
Δ𝑝,𝑎𝑡𝑚,𝑖,𝑚 is the delta on the at-the-money put option on underlying instrument I at a maturity within bucket 

m. 
𝑖𝑎𝑠𝑘  is the ask price of underlying instrument i. 
𝑖𝑏𝑖𝑑  is the bid price of underlying instrument i. 
 
Although the implied volatilities observed at different maturities are generally highly correlated, a conservative 
estimation of the total vega hedging costs is calculated by taking the maximum of: 

1. the total hedging cost for all long vega maturities, and 

2. the total hedging cost for all short vega maturities. 
 
Very short dated vega (<1 week to maturity) is treated separately and, as a result, the add-on for these positions 
will be calculated independently of other maturities.  
 
The overall the vega bid-mid liquidity component is calculated as: 
 

𝐿𝑅𝑣𝑒𝑔𝑎 𝑏𝑖𝑑−𝑚𝑖𝑑,𝑡

= max (∑ max(𝐿𝑅𝑣𝑒𝑔𝑎 𝑏𝑖𝑑−𝑚𝑖𝑑,𝑡,𝑚, 0)

𝑀

𝑚=1

, ∑ max(−𝐿𝑅𝑣𝑒𝑔𝑎 𝑏𝑖𝑑−𝑚𝑖𝑑,𝑡,𝑚, 0)

𝑀

𝑚=1

) 
(11.14) 

 
 

11.2.4 Vega concentration risk add-on 

 
In addition to the bid-to-mid cost, it is also necessary to apply an add-on which reflects the additional cost that 
could be incurred when hedging a vega exposure which is large relative to the average days traded volume. In 
order to assess this, the vega concentration add-on is calculated as: 
  
 

𝐿𝑅𝑣𝑒𝑔𝑎 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑡,𝑚,𝑖 = |𝑣𝑖,𝑡|𝜇𝑖𝜚𝑖,𝑡+1√
|𝑣𝑖,𝑡|

𝑊̅𝑖,𝑡
 (11.15) 

 
 
Where: 
𝑣𝑖,𝑡 is the aggregate vega for all option positions on underlying instrument i 

𝜇𝑖  is the market impact coefficient with default value of 1 



                 Equity Derivatives Margin Model Description (ClearisQ) 

Version: 1.4.2 (202401)  Page 49 of 51 

𝜚𝑖,𝑡+1 is the projected daily volatility of volatility for underlier i on day t+1. This is calculated using the EWMA 

volatility of the 6-month ATM implied volatility pivot point, using the same seed vol period and lambda 
parameter as is used for the price of underlying instruments. 

𝑊̅𝑖,𝑡 is the average traded vega for a given date and underlying computed over the last 𝑁𝑙𝑖𝑞observations of 𝑉𝑡,. 

The daily traded vega (Wi,t) is calculated as: 
 

𝑊𝑖,𝑡 =∑𝛼𝑗,𝑡𝛽𝑗,𝑡
𝑗

 (11.16) 

Where: 
𝛼𝑗,𝑡 is the vega of option j on day t 

𝛽𝑗,𝑡 is the traded volume of option j on day t 

 

11.2.5 Total Liquidity Risk Add-On 

The overall liquidity cost incurred is finally calculated as the sum of the liquidity cost of the directional delta, 
the calendar spread delta and the vega contribution: 
 

𝐿𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜,𝑡 = 𝐿𝑅𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑒𝑙𝑡𝑎,𝑡 + 𝐿𝑅𝑐𝑎𝑙𝑒𝑛𝑑𝑎𝑟 𝑑𝑒𝑙𝑡𝑎,𝑡 + 𝐿𝑅𝑣𝑒𝑔𝑎 𝑏𝑖𝑑−𝑚𝑖𝑑,𝑡 + 𝐿𝑅𝑣𝑒𝑔𝑎 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛,𝑡 (11.17) 

 
The liquidity risk add-on will be calculated as the sum of the liquidity risk ass-on for each underlying 
independently, with no hedging benefit recognised for offsetting short and long positions with different 
underliers. 
 

11.3 Large Position (LP) add-on 

The LP add-on reflects the potential excess stress loss in a Clearing Participant portfolio over and above 
available financial resources.  This add-on captures the excess loss exposure taking into account available 
resources in the equity derivatives segment of the mutualised Clearing Fund (under a Cover-2 standard) and 
the Clearing Participant’s individual margin collateral posted. 
 
For a given Clearing Participant, the portfolio LP add-on is calculated as follows: 
 

𝐿𝑃𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = 𝑚𝑖𝑛[0,𝑀𝑎𝑥𝑆𝑇𝐿 − 𝑇𝑀 + 𝜍𝑖 . 𝐷𝐹] (11.18) 

 
where, 

𝑀𝑎𝑥𝑆𝑇𝐿 is the maximum equity derivatives-related stress loss observed for the clearing member 
(expressed as a negative value). 

𝑇𝑀 is the total equity derivatives-related margin requirement including WWR for the Clearing 
Participant (expressed as a negative value).   

𝐷𝐹 is size of the equity derivatives segment of the Cboe Clear Clearing Fund. 

𝜍𝑖  is defined by Clearing Participant, with a maximum (default) value of 0.45. 
 
The LR add-on has been removed from the total margin requirement to ensure that this figure is comparable 
with the stress scenarios, which deal exclusively with market risk. 
 
 
 

12. Treatment of instruments expiring during the MPOR 
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As stated in Section3.2.3, the methodology assumes an MPOR of 3 business days. For this reason, it is important 
that the methodology considers the increase in risk that could arise due to the expiry of instruments during the 
margin period of risk. For this reason, the Initial Margin is calculated as the maximum of: 

i) The margin calculated across all positions in the portfolio and 

ii) The margin calculated on only the positions that are not within the MPOR. 
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Appendix A – Margin model parameters 

 

Table A.1 – FHS and StressHS margin model parameters  

Parameter Symbol Value 

Lookback window N 700 days 

EWMA decay factor λ 0.99 

EWMA seed period - 200 days 

Portfolio margin limit coefficient c 0.8 

StressHS margin coefficient Η 0.25 

Proxy scaling factor φ 0.8 

Volatility surface fit threshold ϖ 0.6% 

 
 
 

 

 

 


